Question

In: Advanced Math

Let p be an odd prime and a be any integer which is not congruent to...

Let p be an odd prime and a be any integer which is not congruent to 0 modulo p.

Prove that the congruence x 2 ≡ −a 2 (mod p) has solutions if and only if p ≡ 1 (mod 4).

Hint: Naturally, you may build your proof on the fact that the statement to be proved is valid for the case a = 1.

Solutions

Expert Solution


Related Solutions

Let p be an odd prime (i.e., any prime other than 2). Form two vector spaces...
Let p be an odd prime (i.e., any prime other than 2). Form two vector spaces V1, V2 over Fp (prime field of order p) with bases corresponding to the edges and faces of an icosahedron (so that V1 has dimension 30 and V2 has dimension 20). Let T : V1 → V2 be the linear transformation defined as follows: given a vector v ∈ V1, T(v) is the vector in V2 whose component corresponding to a given face is...
Let p be an odd prime. (a) (*) Prove that there is a primitive root modulo...
Let p be an odd prime. (a) (*) Prove that there is a primitive root modulo p2 . (Hint: Use that if a, b have orders n, m, with gcd(n, m) = 1, then ab has order nm.) (b) Prove that for any n, there is a primitive root modulo pn. (c) Explicitly find a primitive root modulo 125. Please do all parts. Thank you in advance
3.11. (a) Let n be any integer such that n is congruent to 0 (mod 7)....
3.11. (a) Let n be any integer such that n is congruent to 0 (mod 7). For any positive integer k, what is the remainder when n^k is divided by 7? (b) Let n be any integer such that n is congruent to 1 (mod 7). For any positive integer k, what is the remainder when n^k is divided by 7? (c) Let n be any integer such that n is congruent to 2 (mod 7). For any nonnegative integer...
Let p be an integer other than 0, ±1. (a) Prove that p is prime if...
Let p be an integer other than 0, ±1. (a) Prove that p is prime if and only if it has the property that whenever r and s are integers such that p = rs, then either r = ±1 or s = ±1. (b) Prove that p is prime if and only if it has the property that whenever b and c are integers such that p | bc, then either p | b or p | c.
Suppose a is a positive integer and p is a prime/ Prove that p|a if and...
Suppose a is a positive integer and p is a prime/ Prove that p|a if and only if the prime factorization of a contains p. Can someone please show a full proof to this, thank you.
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Prove that R is an equivalence relation. you may use the following lemma: If p is prime and p|mn, then p|m or p|n. Indicate in your proof the step(s) for which you invoke this lemma.
11.4 Let p be a prime. Let S = ℤ/p - {0} = {[1]p, [2]p, ....
11.4 Let p be a prime. Let S = ℤ/p - {0} = {[1]p, [2]p, . . . , [p-1]p}. Prove that for y ≠ 0, Ly restricts to a bijective map Ly|s : S → S. 11.5 Prove Fermat's Little Theorem
Let P(n) := ” If n^3 is odd then n is also odd.” I.e., if ∃k...
Let P(n) := ” If n^3 is odd then n is also odd.” I.e., if ∃k ∈ Z, n3 = 2k + 1, ∃b ∈ Z, n = 2b + 1 a) Prove P(n) by contraposition b) Prove P(n) contradiction c) Prove P(n) using induction
(a) Let G be a finite abelian group and p prime with p | | G...
(a) Let G be a finite abelian group and p prime with p | | G |. Show that there is only one p - Sylow subgroup of G. b) Find all p - Sylow subgroups of (Z2500, +)
2. (a) Let p be a prime. Determine the number of elements of order p in...
2. (a) Let p be a prime. Determine the number of elements of order p in Zp^2 ⊕ Zp^2 . (b) Determine the number of subgroups of of Zp^2 ⊕ Zp^2 which are isomorphic to Zp^2 .
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT