Question

In: Advanced Math

Let P(n) := ” If n^3 is odd then n is also odd.” I.e., if ∃k...

Let P(n) := ” If n^3 is odd then n is also odd.” I.e., if ∃k ∈ Z, n3 = 2k + 1, ∃b ∈ Z, n = 2b + 1

a) Prove P(n) by contraposition

b) Prove P(n) contradiction

c) Prove P(n) using induction

Solutions

Expert Solution


Related Solutions

Let X Geom(p). For positive integers n, k define P(X = n + k | X...
Let X Geom(p). For positive integers n, k define P(X = n + k | X > n) = P(X = n + k) / P(X > n) : Show that P(X = n + k | X > n) = P(X = k) and then briefly argue, in words, why this is true for geometric random variables.
Let p be an odd prime (i.e., any prime other than 2). Form two vector spaces...
Let p be an odd prime (i.e., any prime other than 2). Form two vector spaces V1, V2 over Fp (prime field of order p) with bases corresponding to the edges and faces of an icosahedron (so that V1 has dimension 30 and V2 has dimension 20). Let T : V1 → V2 be the linear transformation defined as follows: given a vector v ∈ V1, T(v) is the vector in V2 whose component corresponding to a given face is...
Let S_k(n) = 1^k + 2^k + ··· + n^k for n, k ≥ 1. Then,...
Let S_k(n) = 1^k + 2^k + ··· + n^k for n, k ≥ 1. Then, S_4(n) is given by S_4(n)= n(n+1)(2n+1)(3n^2 +3n−1)/ 30 Prove by mathematical induction.
Let p be an odd prime. (a) (*) Prove that there is a primitive root modulo...
Let p be an odd prime. (a) (*) Prove that there is a primitive root modulo p2 . (Hint: Use that if a, b have orders n, m, with gcd(n, m) = 1, then ab has order nm.) (b) Prove that for any n, there is a primitive root modulo pn. (c) Explicitly find a primitive root modulo 125. Please do all parts. Thank you in advance
Let p be an odd prime and a be any integer which is not congruent to...
Let p be an odd prime and a be any integer which is not congruent to 0 modulo p. Prove that the congruence x 2 ≡ −a 2 (mod p) has solutions if and only if p ≡ 1 (mod 4). Hint: Naturally, you may build your proof on the fact that the statement to be proved is valid for the case a = 1.
Let A be a diagonalizable n × n matrix and let P be an invertible n...
Let A be a diagonalizable n × n matrix and let P be an invertible n × n matrix such that B = P−1AP is the diagonal form of A. Prove that Ak = PBkP−1, where k is a positive integer. Use the result above to find the indicated power of A. A = 6 0 −4 7 −1 −4 6 0 −4 , A5 A5 =
7. Let n ∈ N with n > 1 and let P be the set of...
7. Let n ∈ N with n > 1 and let P be the set of polynomials with coefficients in R. (a) We define a relation, T, on P as follows: Let f, g ∈ P. Then we say f T g if f −g = c for some c ∈ R. Show that T is an equivalence relation on P. (b) Let R be the set of equivalence classes of P and let F : R → P be...
Let A be a diagonalizable n × n matrix and let P be an invertible n...
Let A be a diagonalizable n × n matrix and let P be an invertible n × n matrix such that B = P−1AP is the diagonal form of A. Prove that Ak = PBkP−1, where k is a positive integer. Use the result above to find A5 A = 4 0 −4 5 −1 −4 6 0 −6
1)Show that a subset of a countable set is also countable. 2) Let P(n) be the...
1)Show that a subset of a countable set is also countable. 2) Let P(n) be the statement that 13 + 23 +· · ·+n3 =(n(n + 1)/2)2 for the positive integer n. a) What is the statement P(1)? b) Show that P(1) is true, completing the basis step of the proof. c) What is the inductive hypothesis? d) What do you need to prove in the inductive step? e) Complete the inductive step, identifying where you use the inductive hypothesis....
Number Theory: Let p be an odd number. Recall that a primitive root, mod p, is...
Number Theory: Let p be an odd number. Recall that a primitive root, mod p, is an integer g such that gp-1 = 1 mod p, and no smaller power of g is congruent to 1 mod p. Some results in this chapter can be proved via the existence of a primitive root(Theorem 6.26) (c) Given a primitive root g, and an integer a such that a is not congruent to 0 mod p, prove that a is a square...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT