Question

In: Economics

Let the production function for an economy be Y=AK1/2L1/2 where Y is output, K is capital,...

Let the production function for an economy be Y=AK1/2L1/2 where Y is output, K is capital, L is labor and A is "ideas." If A=4, L=100, the savings rate is 1/5 and the depreciation rate is 1/3, find the steady-state levels of capital, output and consumption. [Answers are all whole numbers.]

K*=

Y*=

C*=

Solutions

Expert Solution

This type of production function is called Cobb Douglas production function. The model given under to calculate steady state level of variables was given by Solow and Swan , known as Solow Swan Neo- classical m growth models. The steady state level of output, capital and consumption ( endogenous) variables are calculated from the following equation called as fundamental equation of Solow model .

Since it is difficult to type equations, i attached the photo shot of left over answer below. One thing need to consider that there is need of population level of country in order to calculate steady state level of capital , output, and consumption, which is missing in the equation , but i'll elaborate the question to possible extend that if you get the population data of a country you can easily calculate the respective variables easily.


Related Solutions

Consider an economy described by the aggregate production function Y=f(K,L)=KEL^(1/2) Where Y is the total output,...
Consider an economy described by the aggregate production function Y=f(K,L)=KEL^(1/2) Where Y is the total output, K is the total capital stock, E is the efficiency of labour, and L is the total labour force. Assume this economy has a population growth of 5%, a technological growth rate of 10%, and a depreciation rate of 20%. Use the Solow model with population growth and labour-augmenting technological progress to answer the following questions: Assume this economy has a population growth of...
Consider an economy described by the aggregate production function Y=f(K,L)=(KEL)^(1/2) Where Y is the total output,...
Consider an economy described by the aggregate production function Y=f(K,L)=(KEL)^(1/2) Where Y is the total output, K is the total capital stock, E is the efficiency of labour, and L is the total labour force. Assume this economy has a population growth of 5%, a technological growth rate of 10%, and a depreciation rate of 20%. Use the Solow model with population growth and labour-augmenting technological progress to answer the following questions: Assume this economy has a population growth of...
Suppose that the production function for the economy is Y = AK0.25L0.75, A = 2, K...
Suppose that the production function for the economy is Y = AK0.25L0.75, A = 2, K = 100,000, and L = 60,000. What are the values of real GDP, the real wage, and the real rental cost of capital? Show this data using graphs of the aggregate production function, the aggregate capital market, and the aggregate labor market. Really need help on this ASAP!!
Consider the production function: Y = AK1/3L2/3 . Y is output, K is capital, and L...
Consider the production function: Y = AK1/3L2/3 . Y is output, K is capital, and L is labor. The marginal product of labor is: 2/3A(K/L)1/3 The marginal product of capital is: 1/3A(L/K)2/3 a) Explain how a tax cut on capital promoting capital accumulation can benefit workers. b) Labor unions have often opposed immigration. Using the above equations, explain why. c) Why is productivity growth so important in raising living standards across the population?
Suppose a country has the production function Y = 2 √?, where Y = output and...
Suppose a country has the production function Y = 2 √?, where Y = output and K = physical capital. People devote 30% of output to producing new capital goods ( = 0.30). Further assume that capital depreciates at the rate of 3 percent per period (δ = 0.03). a. Suppose that the country invested in 6 units of new capital in the current period. By how many units will output change in the next period? b. What are the...
Consider the following production function, ? = ?1⁄4?1⁄4?1⁄4 , where y = output, K = the...
Consider the following production function, ? = ?1⁄4?1⁄4?1⁄4 , where y = output, K = the amount of capital, L = the number of employment, m = quantity of variable materials hired. Let r (unit price of capital) = $5, w (wage per employment) = $3, pm (unit price of variable material) = $12; Suppose that the firm is minimizing its cost of production in the short run, (a) Suppose in short run, the amount of capital is fixed at...
Consider the production function ? = ?? ?? ? where ? is output, ? is capital,...
Consider the production function ? = ?? ?? ? where ? is output, ? is capital, ? is labour and ?, ? and ? are positive parameters. a. Derive the parametric conditions under which production exhibits CRS, IRS and DRS, respectively. b. Let ?(?,?0) be the isoquant associated with output level ?0. Derive the expression for ?(?,?0). In a graph, illustrate this function and the effect of an innovation represented by an increase in the value of ?. c. For...
Production function Y = 4K1/4L3/4, where the level of capital in the economy is 1000 and...
Production function Y = 4K1/4L3/4, where the level of capital in the economy is 1000 and the level of labor in the economy is 1000. a) Compute the equilibrium real wage. b) Compute the equilibrium real rental rate. c) Does Euler's theorem hold? d) What fraction of output of this economy is paid to the owners of capital? e) Suppose tighter immigration policy reduces the labor supply. How will this affect the real rental rate on capital? f) Suppose tighter...
Problem 2 Consider an economy described by the production function: Y = F(K,L) = K 1/2...
Problem 2 Consider an economy described by the production function: Y = F(K,L) = K 1/2 L 1/2 a. What is the per- worker production function? b. Assuming no population growth or technological progress, find the steady- state capital stock per worker, output per worker, and consumption per worker as a function of the saving rate and the depreciation rate. c. Assume that the depreciation rate is 10 percent per year. Make a table showing steady-state capital per worker, output...
Bridget's Brewery production function is given by y(K, L) = 2 root of KL, where K...
Bridget's Brewery production function is given by y(K, L) = 2 root of KL, where K is the number of vats she uses and L is the number of labor hours. Does this production process exhibit increasing, constant or decreasing returns to scale?  
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT