Question

In: Economics

Consider an economy described by the aggregate production function Y=f(K,L)=KEL^(1/2) Where Y is the total output,...

Consider an economy described by the aggregate production function

Y=f(K,L)=KEL^(1/2) Where Y is the total output, K is the total capital stock, E is the efficiency of labour, and L is the total labour force.

Assume this economy has a population growth of 5%, a technological growth rate of 10%, and a depreciation rate of 20%. Use the Solow model with population growth and labour-augmenting technological progress to answer the following questions:

Assume this economy has a population growth of 5%, a technological growth rate of 10%, and a depreciation rate of 20%. Use the Solow model with population growth and labour-augmenting technological progress to answer the following questions:

1. Calculate the steady-state values of capital stock per effective worker (k), output per effective worker (y) and consumption per effective worker (c)

2. Calculate the golden rule level of capital per effective worker (k*gold), the golden rule output per effective worker level (y*gold), the golden rule consumption per effective worker (c*gold), and the golden rule investment per effective work (i*gold) and use appropriate graph to show the calculated values.

Solutions

Expert Solution


Related Solutions

Consider an economy described by the aggregate production function Y=f(K,L)=(KEL)^(1/2) Where Y is the total output,...
Consider an economy described by the aggregate production function Y=f(K,L)=(KEL)^(1/2) Where Y is the total output, K is the total capital stock, E is the efficiency of labour, and L is the total labour force. Assume this economy has a population growth of 5%, a technological growth rate of 10%, and a depreciation rate of 20%. Use the Solow model with population growth and labour-augmenting technological progress to answer the following questions: Assume this economy has a population growth of...
Problem 2 Consider an economy described by the production function: Y = F(K,L) = K 1/2...
Problem 2 Consider an economy described by the production function: Y = F(K,L) = K 1/2 L 1/2 a. What is the per- worker production function? b. Assuming no population growth or technological progress, find the steady- state capital stock per worker, output per worker, and consumption per worker as a function of the saving rate and the depreciation rate. c. Assume that the depreciation rate is 10 percent per year. Make a table showing steady-state capital per worker, output...
Consider the economy described by the production function Y = F (K, L x E) =...
Consider the economy described by the production function Y = F (K, L x E) = Kα(LE)1-α (a) Derive per effective worker production function. (b) Assume there is population growth rate, depreciation rate and technology growth rate. -Write the law of motion of k. -Tell how k* will be changed when population growth rate increases with graph. (c) Calculate steady state equilibrium. k∗ = y∗ = c∗ = (d) Calculate gold rule capital stock and output. kgold = ygold =...
Consider the following aggregate production function: Y=100×L×K, where A is the total factor productivity, K is...
Consider the following aggregate production function: Y=100×L×K, where A is the total factor productivity, K is the amount of capital in the economy, L is the labour force, and Y is the GDP. Is this aggregate production function exhibiting the constant returns to scale? Explain how you know. (2) Is this aggregate production function exhibiting the diminishing marginal product of capital? Explain how you know. (2) In 1867, the government employed 6% of the country’s workers. Since then, the country’s...
3. • Consider an economy described by the production function: Y 5 F(K, L) 5 K0.4L0.6....
3. • Consider an economy described by the production function: Y 5 F(K, L) 5 K0.4L0.6. a. What is the per-worker production function? b. Assuming no population growth or technological progress, find the steady-state capital stock per worker, output per worker, and consumption per worker as a function of the saving rate and the depreciation rate. c. Assume that the depreciation rate is 15 percent per year. Make a table showing steadystate capital per worker, output per worker, and consumption...
Solow Growth Model Question: Consider an economy where output (Y) is produced according to function Y=F(K,L)....
Solow Growth Model Question: Consider an economy where output (Y) is produced according to function Y=F(K,L). L is number of workers and Y is the capital stock. Production function F(K,L) has constant returns to scale and diminishing marginal returns to capital and labor individually. Economy works under assumption that technology is constant over time. The economy is in the steady-state capital per worker. Draw graph. In two year time there is a natural disaster which destroys part of economies capital...
The production function of an economy is F(K,L) = 20(K0.5L0.5), where L is labour and K...
The production function of an economy is F(K,L) = 20(K0.5L0.5), where L is labour and K is capital with L = 400 and K = 400. What type of returns to scale does this production function exhibit?
Let the production function for an economy be Y=AK1/2L1/2 where Y is output, K is capital,...
Let the production function for an economy be Y=AK1/2L1/2 where Y is output, K is capital, L is labor and A is "ideas." If A=4, L=100, the savings rate is 1/5 and the depreciation rate is 1/3, find the steady-state levels of capital, output and consumption. [Answers are all whole numbers.] K*= Y*= C*=
Consider the following production function: x = f(l,k) = lb kb where x is the output,...
Consider the following production function: x = f(l,k) = lb kb where x is the output, l is the labour input, k is the capital input, and b is a positive constant. Suppose b < 1/2. (a) Set up the cost minimization problem and solve for the conditional labour and conditional capital demand functions. Let w and r be the wage rate and rental cost of capital respectively. (b) Using your answer in (a), derive the cost function and simplify...
Suppose that output Q is produced with the production function Q = f(K;L), where K is...
Suppose that output Q is produced with the production function Q = f(K;L), where K is the number of machines used, and L the number of workers used. Assuming that the price of output p and the wage w and rental rate of capital r are all constant, what would the prot maximizing rules be for the hiring of L and K? (b) What is theMRTSK;L for the following production function: Q = 10K4L2? Is this technology CRS, IRS or...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT