Question

In: Math

A box with an open top is to be constructed out of a rectangular piece of cardboard with dimensions length=9 ft


A box with an open top is to be constructed out of a rectangular piece of cardboard with dimensions length=9 ft and width=6 ft by cutting a square piece out of each corner and turning the sides up as shown in the picture. 

image.png

Determine the length x of each side of the square that should be cut which would maximize the volume of the box. 

Solutions

Expert Solution

Taking the derivative of the volume with respect to x

Hence the length x will be equal to 5/2 - sqrt(7)/2 which will maximize the volume

So, x = 1.177


Related Solutions

A box with an open top is to be constructed out of a rectangular piece of...
A box with an open top is to be constructed out of a rectangular piece of cardboard with dimensions length=10 ft and width=11 ft by cutting a square piece out of each corner and turning the sides up. Determine the length x of each side of the square that should be cut which would maximize the volume of the box.
An open cardboard box (with no top) is to be constructed so that the width of the box is four times its length.
An open cardboard box (with no top) is to be constructed so that the width of the box is four times its length. The length of the box is labeled x in the picture. You have 100 in2 of cardboard to use. Find the length x and the height y that maximize the volume of the box. (a.) Find a formula for the volume V in terms of x and y. (b) Use the constraint given by the amount of cardboard available...
An open rectangular box is made from a 9 inch by 12 inch piece of cardboard...
An open rectangular box is made from a 9 inch by 12 inch piece of cardboard by cutting squares of side length ? from the corners. Determine the length of the sides of the square which will maximize the volume. (Clearly identify the function in terms of one variable and state the domain, then solve.)
Write The MATLAB SCRIPT for: An open-top box is constructed from a rectangular piece of sheet...
Write The MATLAB SCRIPT for: An open-top box is constructed from a rectangular piece of sheet metal measuring 10 by 16 inches. Square of what size (accurate to 10-9 inch) should be cut from the corners if the volume of the box is to be 100 cubic inches? Notes: to roughly estimate the locations of the roots of the equation and then approximate the roots to this equation using Newton Iteration method. Please don't give me the Matlab Commands for...
A box with an open top is to be constructed from a square piece of cardboard, 5 ft wide, by cutting out a square from each of the four comers and bending up the sides
A box with an open top is to be constructed from a square piece of cardboard, 5 ft wide, by cutting out a square from each of the four comers and bending up the sides. Find the largest volume that such a box can have.
A box with an open top is to being created with a square piece of cardboard...
A box with an open top is to being created with a square piece of cardboard 8 inches wide, by cutting four identical squares in each corner. The sides are being folded as well. Find the dimensions of the box that has the largest volume.
a. Squares with sides of length x are cut out of each corner of a rectangular piece of cardboard measuring 7 ft by 5 ft.
a. Squares with sides of length x are cut out of each corner of a rectangular piece of cardboard measuring 7 ft by 5 ft. The resulting piece of cardboard is then folded into a box without a lid. Find the volume of the largest box that can be formed in this way. b. Suppose that in part​ (a) the original piece of cardboard is a square with sides of length s. Find the volume of the largest box that...
An open-top box is to be made from a 20cm by 30cm piece of cardboard by...
An open-top box is to be made from a 20cm by 30cm piece of cardboard by removing a square from each corner of the box and folding up the flaps on each side. What size square should be cut out of each corner to get a box with the maximum volume?
An open-top rectangular box is to be constructed with 300 in2 of material. If the bottom...
An open-top rectangular box is to be constructed with 300 in2 of material. If the bottom of the box forms a square, what is the largest possible box, in terms of volume, that can be constructed?
A box with an open top is to be constructed from a 10 inch by 16 inch piece of cardboard by cutting squares of equal sides length from the corners and folding up the sides
A box with an open top is to be constructed from a 10 inch by 16 inch piece of cardboard by cutting squares of equal sides length from the corners and folding up the sides. Find the dimensions of the box of largest volume that can be constructed.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT