Question

In: Math

A box with an open top is to be constructed from a 10 inch by 16 inch piece of cardboard by cutting squares of equal sides length from the corners and folding up the sides


A box with an open top is to be constructed from a 10 inch by 16 inch piece of cardboard by cutting squares of equal sides length from the corners and folding up the sides. Find the dimensions of the box of largest volume that can be constructed.

Solutions

Expert Solution


Related Solutions

A box with an open top is to be constructed from a square piece of cardboard, 5 ft wide, by cutting out a square from each of the four comers and bending up the sides
A box with an open top is to be constructed from a square piece of cardboard, 5 ft wide, by cutting out a square from each of the four comers and bending up the sides. Find the largest volume that such a box can have.
28. an open top box is to be formed by cutting out squares from the corners...
28. an open top box is to be formed by cutting out squares from the corners of a 50 centimeter x 30 centimeter rectangular sheet of material. The height of the box must be a whole number of centimeters. What size squares should be cut out to obtain the box with maximum volume. a. Understanding the problem: If 6 centimeter x 6 centimeter squares are cut from from the corners, the height of the box will be 6 centimeters. In...
A box with an open top is to be constructed out of a rectangular piece of cardboard with dimensions length=9 ft
A box with an open top is to be constructed out of a rectangular piece of cardboard with dimensions length=9 ft and width=6 ft by cutting a square piece out of each corner and turning the sides up as shown in the picture. Determine the length x of each side of the square that should be cut which would maximize the volume of the box. 
By cutting away identical squares from each corner of a rectangular piece of cardboard and folding...
By cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, an open box may be made. If the cardboard is 15 in. long and 7 in. wide, (a) Find the dimensions (in inches) of the box that will yield the maximum volume. (Round your answers to two decimal places if necessary.) (b) Which theorem did you use to find the answer?
By cutting away identical squares from each corner of a rectangular piece of cardboard and folding...
By cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, an open box may be made. If the cardboard is 15 in. long and 14 in. wide, find the dimensions of the box that will yield the maximum volume. (Round your answers to two decimal places.)
An open rectangular box is made from a 9 inch by 12 inch piece of cardboard...
An open rectangular box is made from a 9 inch by 12 inch piece of cardboard by cutting squares of side length ? from the corners. Determine the length of the sides of the square which will maximize the volume. (Clearly identify the function in terms of one variable and state the domain, then solve.)
An open cardboard box (with no top) is to be constructed so that the width of the box is four times its length.
An open cardboard box (with no top) is to be constructed so that the width of the box is four times its length. The length of the box is labeled x in the picture. You have 100 in2 of cardboard to use. Find the length x and the height y that maximize the volume of the box. (a.) Find a formula for the volume V in terms of x and y. (b) Use the constraint given by the amount of cardboard available...
An open-top box is to be made from a 20cm by 30cm piece of cardboard by...
An open-top box is to be made from a 20cm by 30cm piece of cardboard by removing a square from each corner of the box and folding up the flaps on each side. What size square should be cut out of each corner to get a box with the maximum volume?
A box with an open top is to being created with a square piece of cardboard...
A box with an open top is to being created with a square piece of cardboard 8 inches wide, by cutting four identical squares in each corner. The sides are being folded as well. Find the dimensions of the box that has the largest volume.
A box with an open top is to be constructed out of a rectangular piece of...
A box with an open top is to be constructed out of a rectangular piece of cardboard with dimensions length=10 ft and width=11 ft by cutting a square piece out of each corner and turning the sides up. Determine the length x of each side of the square that should be cut which would maximize the volume of the box.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT