Question

In: Economics

6. Consider a pure exchange economy with two individuals, Sarah and James, and two goods, X...

6. Consider a pure exchange economy with two individuals, Sarah and James, and two goods, X and Y . For Sarah, goods X and Y are perfect complements (Leontief preferences), so her utility function is US = min {XS, YS}. For James, goods X and Y are perfect substitutes, so his utility function is UJ = XJ + YJ . Suppose the economy has 100 units of good X and 50 of good Y . Draw indifference curves for Sarah and James in an Edgeworth box and sketch the contract curve. Explain your diagram.

Solutions

Expert Solution

6. In the pure exchange economy with two individuals, Sarah and James, and two goods, X and Y.

For Sarah, goods X and Y are perfect complements (Leontief preferences), so her utility function is

US = min {XS, YS}

Sarah's indifference curves are L shaped.

For James, goods X and Y are perfect substitutes, so his utility function is

UJ = XJ + YJ

James's indifference curves are negaticely sloped straight lines.

The economy has 100 units of good X and 50 units of good Y.

Now, the following diagram shows the indifference curves for Sarah and James.

Figure 1: Indifference curves of Sarah and James. AB is the contract curve.

Sarah's indifference curves are ICS1, ICS2 and ICS3. James's highest indifference curves corresponding to Sarah's indifference curves are ICJ1, ICJ2, ICJ3 respectively.

The pareto optimal points are along the line AB i.e. e1, e2 and e3. Hence the red line AB contains all the pareto optimal points.

​​​​​​The red line AB in the diagram is the contract curve.

Hope the diagram is clear to you my friend.


Related Solutions

Consider an exchange economy with two individuals, A and B, and two goods, x and y....
Consider an exchange economy with two individuals, A and B, and two goods, x and y. Individual A has utility function UA(xA; yA) = xAyA, and individual B has utility function UB(xB; yB) = xByB. If there are 10 units of x and 10 units of y in the market, what is the equation of the contract curve? Group of answer choices yA = 0.5xA yA = 2xA yA = 5xA yA = xA
3. Consider a pure exchange economy with two goods, wine (x) and cheese (y) and two...
3. Consider a pure exchange economy with two goods, wine (x) and cheese (y) and two con- sumers, A and B. Let cheese be the numeraire good with price of $1. Consumer A’s utility function is UA(x,y) = xy and B’s utility function is UB(x,y) = min[x,y]. A has an initial allocation of 10 x and no y, and B has an initial allocation of 10 units of y and no x. (a) Put wine x on the horizontal axis...
Consider the exchange economy. It consists of two individuals, A and B. The only two goods...
Consider the exchange economy. It consists of two individuals, A and B. The only two goods available for consumption are red wine and choco- late. The endowment of the economy is 64 units of red wine and 16 units of chocolate. A’s endowment is wa ? and ca ? ; B’s endowment is wb ? and cb ? . The utility functions for each individual are U = 2(wa ca )1/2 and UB = 10(wBcB)1/2, where wj and cj are...
Sarah and Andrew are two traders in a pure exchange economic with two goods, Bikes (B)...
Sarah and Andrew are two traders in a pure exchange economic with two goods, Bikes (B) and Computers (C). Sarah's preferences are described by the Cobb-Douglas Utility function: Us=B1/3SC2/3S U s = B S 1 / 3 C S 2 / 3 Andrew's preferences are given by: UA=B1/2AC1/2A U A = B A 1 / 2 C A 1 / 2 Assume the price of Bikes is 1 and the price of computers is p. The initial endowments are BA...
Consider a pure exchange economy with 2 goods and 3 agents. Goody is the numeraire,...
Consider a pure exchange economy with 2 goods and 3 agents. Good y is the numeraire, so we set py = 1. • Mr. 1 is Cobb-Douglas of type λ = 0.25 and is endowed with (10, 4). • Mr. 2 is Cobb-Douglas of type λ = 0.5 and is endowed with (5, 9). • Mr. 3 is Cobb-Douglas of type λ = 0.75 and is endowed with (20, 20). In the following steps, you will find the equilibrium of...
Consider an exchange economy with two agents, A, B, and two goods,  x, y. A's endowment is...
Consider an exchange economy with two agents, A, B, and two goods,  x, y. A's endowment is x = 6, y = 4, and B's endowment is x = 4, y = 6. (a) Suppose that A has utility function  u(x, y) = x + y  and B has utility function u(x, y) = xy. Find a competitive equilibrium allocation (CEA) and associated equilibrium prices. What difference would it make if A's endowment is x = 3, y = 1, and B's endowment...
Consider a pure exchange economy with 2 goods and 3 agents. Good y is the numeraire,...
Consider a pure exchange economy with 2 goods and 3 agents. Good y is the numeraire, so we set py = 1. • Mr. 1 is Cobb-Douglas of type λ = 0.25 and is endowed with (10, 4). • Mr. 2 is Cobb-Douglas of type λ = 0.5 and is endowed with (5, 9). • Mr. 3 is Cobb-Douglas of type λ = 0.75 and is endowed with (20, 20). In the following steps, you will find the equilibrium of...
Consider a 2x2 exchange economy where the two individuals A and B engaged in the exchange...
Consider a 2x2 exchange economy where the two individuals A and B engaged in the exchange of the two goods x and y have utility functions U A = x A − y A − 1 and U B = y B − x B − 1, respectively. The individuals' endowments are { ( w A x , w A y ) , ( w B x , w B y ) } = { ( 5 , 10 )...
Consider a pure exchange economy with two consumers, Ann (A) and Bob (B), and two commodities,...
Consider a pure exchange economy with two consumers, Ann (A) and Bob (B), and two commodities, 1 and 2, denoted by (x^A_1, x^A_2) and (x^B_1, x^B_2). Ann’s initial endowment consists of 5 units of good 1 and 10 units of good 2. Bob’s initial endowment consists of 10 unit of good 1 and 5 units of good 2. The consumers’ preferences are represented by the following utility functions:U^A(x^A_1, x^A_2) =min{x^A_1, x^A_2} and U^A(x^B_1, x^B_2)= =min{x^B_1, x^B_2}. Denote by p1 and...
Consider a pure exchange economy with two consumers, Ann (A) and Bob (B), and two commodities,...
Consider a pure exchange economy with two consumers, Ann (A) and Bob (B), and two commodities, 1 and 2, denoted by (x^A_1 , x^A_2 ) and (x^B_1 , x^B_2 ). Ann’s initial endowment consists of 15 units of good 1 and 5 units of good 2. Bob’s initial endowment consists of 5 unit of good 1 and 5 units of good 2. The consumers’ preferences are represented by the following Cobb-Douglas utility functions: U^A(x^A_1 , x^A_2 ) = (x^A_1 )^2...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT