Question

In: Economics

Consider an exchange economy with two agents, A, B, and two goods,  x, y. A's endowment is...

Consider an exchange economy with two agents, A, B, and two goods,  x, y. A's endowment is x = 6, y = 4, and B's endowment is x = 4, y = 6.

(a) Suppose that A has utility function  u(x, y) = x + y  and B has utility function u(x, y) = xy. Find a competitive equilibrium allocation (CEA) and associated equilibrium prices. What difference would it make if A's endowment is x = 3, y = 1, and B's endowment is x = 7, y = 9? (Diagrammatic/geometric reasoning is sufficient.)

(b) A has utility function u(x, y) = x2 + y2 (for which the indifference curves which are “bowed out”); B’s utility function is min{x, y}. Find the contract curve for this economy. Is there a competitive equilibrium allocation (CEA) for some prices?

Solutions

Expert Solution

Page numbers are indicated in the top right corner of every image attached.


Related Solutions

4: There is an exchange economy with two agents, A, B, and two goods, x, y....
4: There is an exchange economy with two agents, A, B, and two goods, x, y. A's endowment is x = 6, y = 4, and B's endowment is x = 4, y = 6. (a) A has the utility function u(x, y) = x + y and B u(x, y) = xy. Find a competitive equilibrium allocation (CEA) and associated equilibrium prices. What difference would it make if A's endowment is x = 3, y = 1, and B's...
Consider an exchange economy with two individuals, A and B, and two goods, x and y....
Consider an exchange economy with two individuals, A and B, and two goods, x and y. Individual A has utility function UA(xA; yA) = xAyA, and individual B has utility function UB(xB; yB) = xByB. If there are 10 units of x and 10 units of y in the market, what is the equation of the contract curve? Group of answer choices yA = 0.5xA yA = 2xA yA = 5xA yA = xA
Consider an economy with two goods, x and y, and two agents, Anna and Bert. Anna...
Consider an economy with two goods, x and y, and two agents, Anna and Bert. Anna and Bert wish to trade with one another in order to maximize their individual utilities. We will consider how their trading decisions depend on the initial endowments of X and Y and on their utility functions. Suppose Anna is endowed with one unit of X and half a unit of Y and Bert is endowed with one unit of X and one and a...
Consider a pure exchange economy with 2 goods and 3 agents. Good y is the numeraire,...
Consider a pure exchange economy with 2 goods and 3 agents. Good y is the numeraire, so we set py = 1. • Mr. 1 is Cobb-Douglas of type λ = 0.25 and is endowed with (10, 4). • Mr. 2 is Cobb-Douglas of type λ = 0.5 and is endowed with (5, 9). • Mr. 3 is Cobb-Douglas of type λ = 0.75 and is endowed with (20, 20). In the following steps, you will find the equilibrium of...
3. Consider a pure exchange economy with two goods, wine (x) and cheese (y) and two...
3. Consider a pure exchange economy with two goods, wine (x) and cheese (y) and two con- sumers, A and B. Let cheese be the numeraire good with price of $1. Consumer A’s utility function is UA(x,y) = xy and B’s utility function is UB(x,y) = min[x,y]. A has an initial allocation of 10 x and no y, and B has an initial allocation of 10 units of y and no x. (a) Put wine x on the horizontal axis...
There are two agents in an exchange economy with two goods. Agent 1 has an initial...
There are two agents in an exchange economy with two goods. Agent 1 has an initial endowment vector ω1 = (2, 0) and a utility function u1 = x1 + x21/2. Agent 2 has an initial endowment vector ω2 = (0, 2) and a utility function u2 = x1 + x21/3. If we change the initial endowments for the two agents so that both have the same initial endowment, ω1 = (1, 1) = ω2, what would happen to the...
Consider the exchange economy. It consists of two individuals, A and B. The only two goods...
Consider the exchange economy. It consists of two individuals, A and B. The only two goods available for consumption are red wine and choco- late. The endowment of the economy is 64 units of red wine and 16 units of chocolate. A’s endowment is wa ? and ca ? ; B’s endowment is wb ? and cb ? . The utility functions for each individual are U = 2(wa ca )1/2 and UB = 10(wBcB)1/2, where wj and cj are...
Consider a pure exchange economy with 2 goods and 3 agents. Goody is the numeraire,...
Consider a pure exchange economy with 2 goods and 3 agents. Good y is the numeraire, so we set py = 1. • Mr. 1 is Cobb-Douglas of type λ = 0.25 and is endowed with (10, 4). • Mr. 2 is Cobb-Douglas of type λ = 0.5 and is endowed with (5, 9). • Mr. 3 is Cobb-Douglas of type λ = 0.75 and is endowed with (20, 20). In the following steps, you will find the equilibrium of...
Consider an economy in which an individual (A) is consuming two goods (X and Y). The...
Consider an economy in which an individual (A) is consuming two goods (X and Y). The government is considering two alternative taxation policies: (a) taxing good X; (b) putting a lump- sum tax on A. By using a graphical analysis, compare these two taxation policies in terms of “excess burden”.
Consider an economy in which an individual (A) is consuming two goods (X and Y). The...
Consider an economy in which an individual (A) is consuming two goods (X and Y). The government is considering two alternative taxation policies: (a) taxing good X; (b) putting a lumpsum tax on A. By using a graphical analysis, compare these two taxation policies in terms of “excess burden”.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT