Question

In: Statistics and Probability

Let X1,…,Xn∼i.i.d.N(0,σ2), for some σ2>0. Let σ2ˆ=1n∑i=1nX2i,andσ2˜=1n∑i=1n(Xi−Xnbar)2. Argue that both proposed estimators σ2ˆ and σ2˜ below...

Let X1,…,Xn∼i.i.d.N(0,σ2), for some σ2>0. Let σ2ˆ=1n∑i=1nX2i,andσ2˜=1n∑i=1n(Xi−Xnbar)2. Argue that both proposed estimators σ2ˆ and σ2˜ below are consistent and asymptotically normal. Then, give their asymptotic variances V(σ2ˆ) and V(σ2˜) and decide if one of them is always bigger than the other. Hint: Use the multivariate Delta method.

Solutions

Expert Solution


Related Solutions

Let X1,...,Xn be independent random variables,and let X=X1+...+Xn be their sum. 1. Suppose that each Xi...
Let X1,...,Xn be independent random variables,and let X=X1+...+Xn be their sum. 1. Suppose that each Xi is geometric with respective parameter pi. It is known that the mean of X is equal to μ, where μ > 0. Show that the variance of X is minimized if the pi's are all equal to n/μ. 2. Suppose that each Xi is Bernoulli with respective parameter pi. It is known that the mean of X is equal to μ, where μ >...
Let X1, X2, . . . , Xn iid∼ N (µ, σ2 ). Consider the hypotheses...
Let X1, X2, . . . , Xn iid∼ N (µ, σ2 ). Consider the hypotheses H0 : µ = µ0 and H1 : µ (not equal)= µ0 and the test statistic (X bar − µ0)/ (S/√ n). Note that S has been used as σ is unknown. a. What is the distribution of the test statistic when H0 is true? b. What is the type I error of an α−level test of this type? Prove it. c. What is...
Let X1, . . . , Xn ∼ iid N(θ, σ2 ), with one-sided hypotheses H0...
Let X1, . . . , Xn ∼ iid N(θ, σ2 ), with one-sided hypotheses H0 : θ ≤ θ0 vs H1 : θ > θ0. (a) If σ^2 is known, we can use the UMP size-α test. Find the formula for the P-value of this test.
Let X1,...,Xn be i.i.d. random variables with mean 0 and variance 2 > 0. In class...
Let X1,...,Xn be i.i.d. random variables with mean 0 and variance 2 > 0. In class we have shown a central limit theorem, ¯ Xn /pn )N(0,1), as n!1 , (1) with the assumption E(X1) = 0. Using (1), we now prove the theorem for a more general E(X1)=µ6=0 case. Now suppose X1,...,Xn are i.i.d. random variables with mean µ6= 0 and variance 2. (a) Show that for dummy random variables Yi = Xi µ, E(Yi) = 0 and V...
Let X1, … , Xn be independent where Xi is normally distributed with unknown mean µ...
Let X1, … , Xn be independent where Xi is normally distributed with unknown mean µ and unknown variance o2 > 0. Find the likelihood ratio test for testing that µ = 0 against −∞ < µ < ∞.
Let X1, … , Xn be independent where Xi is normally distributed with unknown mean µ...
Let X1, … , Xn be independent where Xi is normally distributed with unknown mean µ and unknown variance o2 > 0. Find the likelihood ratio test for testing that µ = 0 against −∞ < µ < ∞.
Let estimator π(hat) = X(bar) for X1, X2, . . . , Xn, Xi ∼ Bernoulli(π)...
Let estimator π(hat) = X(bar) for X1, X2, . . . , Xn, Xi ∼ Bernoulli(π) Recall: P(X = x) = πx (1 − π)1−x , x ∈ {0, 1} E(X) = π V(X) = π(1 − π) a. Show that π(hat) is a Consistent estimator of π b. Find the Maximum Likelihood Estimator of π c. Show that π(hat) is a Minimum Variance Unbiased Estimator of π Please explain the answer in detail
Let X1, . . . , Xn ∼ iid Unif(0, θ). (a) Is this family MLR...
Let X1, . . . , Xn ∼ iid Unif(0, θ). (a) Is this family MLR in Y = X(n)? (b) Find the UMP size-α test for H0 : θ ≤ θ0 vs H1 : θ > θ0. (c) Find the UMP size-α test for H0 : θ ≥ θ0 vs H1 : θ < θ0. (d) Letting R1 be the rejection region for the test in part (b) and R2 be the rejection region for the test in part...
Let x1 > 1 and xn+1 := 2−1/xn for n ∈ N. Show that xn is...
Let x1 > 1 and xn+1 := 2−1/xn for n ∈ N. Show that xn is bounded and monotone. Find the limit. Prove by induction
Let x = (x1,...,xn) ∼ N(0,In) be a MVN random vector in Rn. (a) Let U...
Let x = (x1,...,xn) ∼ N(0,In) be a MVN random vector in Rn. (a) Let U ∈ Rn×n be an orthogonal matrix (UTU = UUT = In) and nd the distribution of UTx. Let y = (y1,...,yn) ∼ N(0,Σ) be a MVN random vector in Rn. Let Σ = UΛUT be the spectral decomposition of Σ. (b) Someone claims that the diagonal elements of Λ are nonnegative. Is that true? (c) Let z = UTy and nd the distribution of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT