Question

In: Advanced Math

Let x1 > 1 and xn+1 := 2−1/xn for n ∈ N. Show that xn is...

Let x1 > 1 and xn+1 := 2−1/xn for n ∈ N. Show that xn is bounded and monotone. Find the limit. Prove by induction

Solutions

Expert Solution

Monotone convergence theorem:- Every bounded monotone sequence of real number is convergent.


Related Solutions

Let X1, . . . , Xn i.i.d. Uniform(θ, θ + 1). Show that: ˆθ1 =...
Let X1, . . . , Xn i.i.d. Uniform(θ, θ + 1). Show that: ˆθ1 = X¯ − 1 2 and ˆθ2 = X(n) − n n + 1 are both consistent estimators for θ.
Let X1, … , Xn. be a random sample from gamma (2, theta) distribution. a) Show...
Let X1, … , Xn. be a random sample from gamma (2, theta) distribution. a) Show that it is the regular case of the exponential class of distributions. b) Find a complete, sufficient statistic for theta. c) Find the unique MVUE of theta. Justify each step.
3. Let X1...Xn be N(μX,σ) and Y1...Yn be iid N(μy,σ) with the two samples X1...Xn, and...
3. Let X1...Xn be N(μX,σ) and Y1...Yn be iid N(μy,σ) with the two samples X1...Xn, and Y1...Xn independent of each other. Assume that the common population SD σ is known but the two means are not. Consider testing the hypothesis null: μx = μy vs alternative: μx ≠ μy. d. Assume σ=1 and n=20. How large must δ be for the size 0.01 test to have power at least 0.99? e. Assume σ=1and δ=0.2. How large must n be for...
3. Let X1...Xn be N(μX,σ) and Y1...Yn be iid N(μy,σ) with the two samples X1...Xn, and...
3. Let X1...Xn be N(μX,σ) and Y1...Yn be iid N(μy,σ) with the two samples X1...Xn, and Y1...Xn independent of each other. Assume that the common population SD σ is known but the two means are not. Consider testing the hypothesis null: μx = μy vs alternative: μx ≠ μy. a. Find the likelihood ratio test statistic Λ. Specify which MLEs you are using and how you plug them in.
1. . Let X1, . . . , Xn, Y1, . . . , Yn be...
1. . Let X1, . . . , Xn, Y1, . . . , Yn be mutually independent random variables, and Z = 1 n Pn i=1 XiYi . Suppose for each i ∈ {1, . . . , n}, Xi ∼ Bernoulli(p), Yi ∼ Binomial(n, p). What is Var[Z]? 2. There is a fair coin and a biased coin that flips heads with probability 1/4. You randomly pick one of the coins and flip it until you get a...
4. (Reflected random walk) Let {Xn|n ≥ 0} be as in Q6. Show that Xn+1 =...
4. (Reflected random walk) Let {Xn|n ≥ 0} be as in Q6. Show that Xn+1 = X0 + Zn+1 − Xn m=0 min{0, Xm + Vm+1 − Um+1}, where Zn = Xn m=1 (Vm − Um), n ≥ 1. Q5. (Extreme value process) Let {In|n ≥ 0} be an i.i.d. sequence of Z-valued random variables such that P{I1 = k} = pk, k ∈ Z and pk > 0 for some k > 0. Define Xn = max{I1, I2, ·...
Let X1,...,Xn be independent random variables,and let X=X1+...+Xn be their sum. 1. Suppose that each Xi...
Let X1,...,Xn be independent random variables,and let X=X1+...+Xn be their sum. 1. Suppose that each Xi is geometric with respective parameter pi. It is known that the mean of X is equal to μ, where μ > 0. Show that the variance of X is minimized if the pi's are all equal to n/μ. 2. Suppose that each Xi is Bernoulli with respective parameter pi. It is known that the mean of X is equal to μ, where μ >...
Let X1, X2, . . . , Xn be a random sample of size n from...
Let X1, X2, . . . , Xn be a random sample of size n from a Poisson distribution with unknown mean µ. It is desired to test the following hypotheses H0 : µ = µ0         versus     H1 : µ not equal to µ0 where µ0 > 0 is a given constant. Derive the likelihood ratio test statistic
Let X1, X2, · · · , Xn (n ≥ 30) be i.i.d observations from N(µ1,...
Let X1, X2, · · · , Xn (n ≥ 30) be i.i.d observations from N(µ1, σ12 ) and Y1, Y2, · · · , Yn be i.i.d observations from N(µ2, σ22 ). Also assume that X's and Y's are independent. Suppose that µ1, µ2, σ12 , σ22  are unknown. Find an approximate 95% confidence interval for µ1µ2.
2. Let X1, . . . , Xn be a random sample from the distribution with...
2. Let X1, . . . , Xn be a random sample from the distribution with pdf given by fX(x;β) = β 1(x ≥ 1). xβ+1 (a) Show that T = ni=1 log Xi is a sufficient statistic for β. Hint: Use n1n1n=exp log=exp −logxi .i=1 xi i=1 xi i=1 (b) Find the pdf of Y = logX, where X ∼ fX(x;β). (c) Find the distribution of T . Hint: Identify the distribution of Y and use mgfs. (d) Find...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT