Question

In: Electrical Engineering

An AC power supply is in series with a 30 μF capacitor and a parallel structure...

An AC power supply is in series with a 30 μF capacitor and a parallel structure with a 100 Ω resistor and a 300 mH inductor. The power supply produces electricity at frequency of 60 cycles / second with an RMS voltage of 120.0 V.

a) What is the formula (including appropriate units) for function of the voltage of the power supply (w.r.t. time when time is in seconds) assuming the voltage was started at its maximum positive value?

b) Draw the full phasor diagram when the resistance voltage phasor is at π/6 . Include identifying angles for the 8 phasors ( ε_0,V_r ,V_c ,V_L ,I_p ,I_r ,I_c ,I_L ).

c) What are the equations for the voltages across and currents into each component? (There are 8 equations in all.)

d) Assume the voltage from the power supply starts at its maximum positive value, what is first time when resistance voltage phasor is at π/6 ?

e) At that moment in part (d), what are the instantaneous voltages across each of the four components, and what are the instantaneous currents into each of the four components?

Solutions

Expert Solution


Related Solutions

1. An AC power supply is in series with a 30 μF capacitor and a parallel...
1. An AC power supply is in series with a 30 μF capacitor and a parallel structure with a 100 Ω resistor and a 300 mH inductor. The power supply produces electricity at frequency of 60 cycles / second with an RMS voltage of 120.0 V. a) What is the formula (including appropriate units) for function of the voltage of the power supply (w.r.t. time when time is in seconds) assuming the voltage was started at its maximum positive value?...
A 22.0 μF capacitor is charged by a 160.0-V power supply, then disconnected from the power...
A 22.0 μF capacitor is charged by a 160.0-V power supply, then disconnected from the power and connected in series with a 0.240-mH inductor. Calculate the energy stored in the inductor at t = 1.45 ms .
A 0.50-μF and a 1.4-μF capacitor (C1 and C2, respectively) are connected in series to a...
A 0.50-μF and a 1.4-μF capacitor (C1 and C2, respectively) are connected in series to a 22-V battery. Part A: Calculate the potential difference across each capacitor. Part B: Calculate the charge on each capacitor. Part C: Calculate the potential difference across each capacitor assuming the two capacitors are in parallel. Part D: Calculate the charge on each capacitor assuming the two capacitors are in parallel.
A parallel-plate capacitor with circular plates and a capacitance of 10.3 μF is connected to a...
A parallel-plate capacitor with circular plates and a capacitance of 10.3 μF is connected to a battery which provides a voltage of 11.2 V . What is the charge on each plate? How much charge would be on the plates if their separation were doubled while the capacitor remained connected to the battery? How much charge would be on the plates if the capacitor were connected to the battery after the radius of each plate was doubled without changing their...
A parallel-plate capacitor has capacitance 8.00 μF. (a) How much energy is stored in the capacitor...
A parallel-plate capacitor has capacitance 8.00 μF. (a) How much energy is stored in the capacitor if it is connected to a 13.00-V battery? μJ (b) If the battery is disconnected and the distance between the charged plates doubled, what is the energy stored? μJ (c) The battery is subsequently reattached to the capacitor, but the plate separation remains as in part (b). How much energy is stored? μJ
An uncharged 2.51 μF capacitor is connected in series with a 6.25 kΩ resistor and an...
An uncharged 2.51 μF capacitor is connected in series with a 6.25 kΩ resistor and an emf source with 70.8 V and negligible internal resistance. The circuit is completed at t = 0. A-) Just after the circuit is completed, Find the rate at which electrical energy is being dissipated in the resistor? B-) At what value of tt is the rate at which electrical energy is being dissipated in the resistor equal to the rate at which electrical energy...
A 6.50 μF capacitor that is initially uncharged isconnected in series with a 4500 Ω resistor...
A 6.50 μF capacitor that is initially uncharged isconnected in series with a 4500 Ω resistor and a503 V emf source with negligible internal resistance. a)Just after the circuit is completed, what is the voltagedrop across the capacitor?                   Vc=                  V b)Just after the circuit is completed, what is the voltagedrop across the resistor?                       VR =                 V c)Just after the circuit is completed, whatis the charge on the capacitor?                 Qo=                     C d)Just after the circuit is completed, whatis the current through the resistor?                IR=                 A...
Given a 2.00 μF capacitor, a 5.25 μF capacitor, and a 2.50 V battery, find the...
Given a 2.00 μF capacitor, a 5.25 μF capacitor, and a 2.50 V battery, find the charge on each capacitor if you connect them in the following ways. (a) in series across the battery 2.00 μF capacitor μC 5.25 μF capacitor (b) in parallel across the battery 2.00 μF capacitor μC 5.25 μF capacitor
Given a 2.00 μF capacitor, a 5.00 μF capacitor, and a 6.50 V battery, find the...
Given a 2.00 μF capacitor, a 5.00 μF capacitor, and a 6.50 V battery, find the charge on each capacitor if you connect them in the following ways. (a) in series across the battery 2.00 μF capacitor ...μC 5.00 μF capacitor ... μC (b) in parallel across the battery 2.00 μF capacitor ...μC 5.00 μF capacitor ...μC
An air-filled parallel plate capacitor has a capacitance of 4.40 μF. The plate spacing is now...
An air-filled parallel plate capacitor has a capacitance of 4.40 μF. The plate spacing is now doubled and a dielectric is inserted, completely filling the space between the plates. As a result, the capacitance becomes 16.2 μF. a. Calculate the dielectric constant of the inserted material. b. If the original capacitor was charged to a potential difference of 6.0 V and the battery was disconnected when the modifications to the capacitor was made, by what factor did the energy stored...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT