Question

In: Physics

Given a 2.00 μF capacitor, a 5.25 μF capacitor, and a 2.50 V battery, find the...

Given a 2.00 μF capacitor, a 5.25 μF capacitor, and a 2.50 V battery, find the charge on each capacitor if you connect them in the following ways.

(a) in series across the battery 2.00 μF capacitor μC 5.25 μF capacitor

(b) in parallel across the battery 2.00 μF capacitor μC 5.25 μF capacitor

Solutions

Expert Solution

Given:

(a) Find the charge on each capacitor when connected in series across the battery.

First, find the equivalent capacitance

===============

Total charge,

In Series connections, charge on all devices is the same.

ANSWER:

ANSWER:

=================================

(b) Find the charge on each capacitor when connected in parallel across the battery.

In Parallel connections, the voltage across all devices is the same

Charge,

ANSWER :

------

Charge,

ANSWER :

==============================


Related Solutions

A 14.5-μF capacitor is charged to a potential of 40.0 V and then discharged through a...
A 14.5-μF capacitor is charged to a potential of 40.0 V and then discharged through a 65.0­ Ω resistor. 1. How long after discharge begins does it take for the capacitor to lose 90.0% of its initial charge? 2. How long after discharge begins does it take for the capacitor to lose 90.0% of its initial energy? 3. What is the current through the resistor at the time when the capacitor has lost 90.0% of its initial charge? 4. What...
An 8.5 nF capacitor is charged up by a 20 V battery. The battery is removed...
An 8.5 nF capacitor is charged up by a 20 V battery. The battery is removed and replaced with a coil of wire. It then takes 7.3 x 10-5 s for this now LC circuit to undergo a full charging cycle. (a) Calculate the inductance of the coil (b) Calculate the total energy of the circuit (c) Calculate the charge on the capacitor after 1 x 10-5 s.
A 22.0 μF capacitor is charged by a 160.0-V power supply, then disconnected from the power...
A 22.0 μF capacitor is charged by a 160.0-V power supply, then disconnected from the power and connected in series with a 0.240-mH inductor. Calculate the energy stored in the inductor at t = 1.45 ms .
Qn 1 A capacitor is attached to a battery with a terminal voltage of V. What...
Qn 1 A capacitor is attached to a battery with a terminal voltage of V. What happens to the capacitance of the capacitor if it is attached to a new battery with a terminal voltage of 2V, twice as large as the previous battery? The new capacitance is twice as large. The new capacitance is half as large. The new capacitance is the same as it was before. Question 2 A capacitor is attached to a battery with a voltage...
A 8.0 µF capacitor is charged by a 11.0 V battery through a resistance R. The...
A 8.0 µF capacitor is charged by a 11.0 V battery through a resistance R. The capacitor reaches a potential difference of 4.00 V at a time 3.00 s after charging begins. Find R in kO. I've been using , but I'm not sure if that is right since I just CAN'T get the right answer...I keep getting 370.7 kO (incorrect).
A 100 F capacitor and a 225  resistor are connected in series with a 75.0 V battery....
A 100 F capacitor and a 225  resistor are connected in series with a 75.0 V battery. The switch is closed and the capacitor begins to charge.   a)When does the capacitor hold 15.0 % of its maximum charge? Express your answer in milliseconds. b)What is the voltage across the resistor at this same time? Please state your answers as clear as possible and show all the steps and formulas used. Thank you!!!
A parallel plate capacitor is attached to 12 V battery. When an insulator of dielectric constant...
A parallel plate capacitor is attached to 12 V battery. When an insulator of dielectric constant 6 is used to fill the air space between the capacitor plates, what happens to the energy stored and to the surface charge density on the plates if the battery is still attached?
A 3500-pF air-gap capacitor is connected to a 25-V battery. If a piece of mica is...
A 3500-pF air-gap capacitor is connected to a 25-V battery. If a piece of mica is placed between the plates, how much charge will flow from the battery?
An uncharged capacitor is connected to the terminals of a 4.0 V battery, and 12 micro C flows to the positive plate.
An uncharged capacitor is connected to the terminals of a 4.0 V battery, and 12 micro C flows to the positive plate. The 4.0 V battery is then disconnected and replaced with a 5.0 V battery, with the positive and negative terminals connected in the same manner as before. How much additional charge flows to the positive plate?
2. A 15-MΩ resistor and a 48-nF capacitor get connected in series to a 15-V battery....
2. A 15-MΩ resistor and a 48-nF capacitor get connected in series to a 15-V battery. a. How long will it be until the capacitor is “fully” charged? b. If the battery is then disconnected from the circuit, how long will it be until the capacitor’s voltage is 9.0 V? What is the charge of the capacitor at that moment? c. If we’d like the capacitor’s voltage in this circuit to decrease from 15-V to 9.0-V in 1.5 seconds after...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT