In: Statistics and Probability
Part A)
Values are given as,
Mean = 100,
Standard Deviation = 15,
x1 = 90,
x2 = 120,
We need to find P(90 < x < 120)
Using below formula
Put the values in the formula,
P[(90 - 100)/15 < z < (120 - 100)/15]
= (-0.67 < z < 1.33)
z scores are (-0.67, 1.33)
Using below formula,
P(a < z < b) = P(z < b) - P(z <
a)
Put the values in above formula,
P(-0.67 < z < 1.33) = P(z < 1.33) - P(z < -0.67)
Using z table, we get,
P(z < 1.33) = 0.9082
P(z < -0.67) = 0.2514
So, P(-0.67 < z < 1.33) = 0.9082- 0.2514= 0.6568
Hence, P(-0.67 < z < 1.33) = 0.6568
Part B)
Values are given as,
Mean= 100,
Standard Deviation = 15,
x = 75,
We need to find P(x < 75)
Using below formula
Put the values in the formula,
P[(z < (75 - 100)/15]
= (z < -1.67)
z score is -1.67
Using z table, we get,
P(z < -1.67) = 0.0475
Hence, P(z < -1.67) = 0.0475
Part C)
Values are given as,
Mean= 100,
Standard Deviation = 15,
x1 = 80,
x2 = 110,
We need to find P(80 < x < 110)
Using below formula
Put the values in the formula,
P[(80 - 100)/15 < z < (110 - 100)/15]
= (-1.33 < z < 0.67)
z scores are (-1.33, 0.67)
Using below formula,
P(a < z < b) = P(z < b) - P(z <
a)
Put the values in above formula,
P(-1.33 < z < 0.67) = P(z < 0.67) - P(z < -1.33)
Using z table, we get,
P(z < 0.67) = 0.74857
P(z < -1.33) = 0.09176
So, P(-1.33 < z < 0.67) = 0.7486- 0.0918= 0.6568
Hence, P(-1.33 < z < 0.67) = 0.6568