Question

In: Chemistry

Propane is mixed with 20% excess air (propane air mixture is initially at 25 °C and...

Propane is mixed with 20% excess air (propane air mixture is initially at 25 °C and 2.0 atm) and combusted at atmospheric pressure. It is assumed that the heat transfer between the chamber and the surroundings is negligible. In addition, you may assume that heat capacities of the gases are constant and that the reaction proceeds to 100% conversion. (30 points) a) Determine the flame temperature of the burner. b) Determine the flame temperature if 25% of the heat generated by combustion was lost through heat transfer to the surroundings? While doing the calculations you may assume that the heat capacities of the gases are constant. The heat capacities of the gases of interest are shown below. Gas Heat capacity Nitrogen 29.12 J/(mol*k) Oxygen 29.39 J/(mol*k) Propane 74.92 J/(mol*k) Carbon dioxide 37.14 J/(mol*k) Water 33.57 J/(mol*k)

Solutions

Expert Solution

propane is mixed with 20% excess in air, hence propane air mixture is initailly at 25oC and 2.0 atm

exposive limits of propane gas = 2.15 % as lower limit

9.6% as upper limit

ignition temperature of propane gas = 493oC - 604oC

a) percent excess air = 20%

percent available heat = total heat delivered x 100

total heat into furnace

hence , propane gas flame temperature of burner = 1980oC

b) while doing the calculations assume that the heat capacities of the gase are constant.

the heat capacities of the gases of interest

gas heat capacity nitrogen= 29.12 J/mol K

gas heat capacity of oxygen = 29.39  J/mol K

gas heat capacity of Propane = 74.92  J/mol K

gas heat capacity of Carbon di oxide = 37.14  J/mol K

gas heat capacity of Wate = 33.57  J/mol K

given system is adiabatic in condition, hence the flame temperatures are constant, unless the heat generated by combustion was lost through heat transfer to the surroundingss


Related Solutions

mixture of 75 mole% propane and the balance methane is burned with 25 % excess air....
mixture of 75 mole% propane and the balance methane is burned with 25 % excess air. Fractional conversion of 90% of propane and 85% of the methane are achieved; of the carbon that reacts, 95% reacts to form CO2 and the balance reacts to form CO. . 1- draw and completely label the flow chartfor the process including labels for all unknown flow rates. 2-calculate the molar flow rate os air to the reactor per mol of fuel fed to...
Propane burns with 15% excess air. Before the propane-air mixture enters the burner, air preheats from...
Propane burns with 15% excess air. Before the propane-air mixture enters the burner, air preheats from 32 F to 575 F. Determine the requirements of the preheater (BTU / h) if the amount of propane fed to the burner is 1.35x105 SCFH (standard cubic feet per hour) Note: In this case, take standard conditions in the natural gas industry, such as 60 F and 1 atm. Report: a) Flow diagram of the complete process and its table of material balance...
For a constant-volume stoichiometric propane-air mixture initially at 298K, determine the adiabatic flame temperature and final...
For a constant-volume stoichiometric propane-air mixture initially at 298K, determine the adiabatic flame temperature and final pressure assuming constant specific heats evaluated at 298K.
Methane at 25°C is burned in a boiler furnace with 10.0% excess air. The air enters...
Methane at 25°C is burned in a boiler furnace with 10.0% excess air. The air enters the burner at a temperature of 100°C. Ninety percent of the methane fed is consumed; the product gas is analyzed and found to contain 10.0 mol CO2 per 1 mol of CO. The exhaust gases exit the furnace at 400°C. Calculate the rate of heat transferred from the furnace, given that a molar flow rate of 100 mol/s CH4 is fed to the furnace.
A mixture of propane and butane is burned with air. Partial analysis of the stack gas...
A mixture of propane and butane is burned with air. Partial analysis of the stack gas produces the following dry-basis volume percentages: 0.0527% C3H8, 0.0527% C4H10, 1.48% CO, and 7.12% CO2. The stack gas is at an absolute pressure of 780 mmHg and the dew point of the gas is 46.5 ˚C. Calculate the molar composition of the fuel.
In a closed combustion vessel, propane (C3H8) and air are mixed at equivalence ratio of 1.11,...
In a closed combustion vessel, propane (C3H8) and air are mixed at equivalence ratio of 1.11, temperature of 298 K, and pressure of 1 bar. The mixture is burned to produce solely CO2, CO, H2O, and N2. The heat rejected from the vessel is 820 MJ/kmol of fuel. What are the final temperature and final pressure of the mixture? Since neither O2 nor H2 is present in the burned gas, dissociation can be neglected.
In a furnace, 76 lbs propane C3H8 are burned with 17.2% excess air for complete combustion....
In a furnace, 76 lbs propane C3H8 are burned with 17.2% excess air for complete combustion. What is the percent CO2 in combustion products? Round your answer to the one decimal place.
Complete combustion of 1 kmol of PROPANE GAS with 0% excess air produces (?????) kmol of...
Complete combustion of 1 kmol of PROPANE GAS with 0% excess air produces (?????) kmol of carbon-dioxide gas. (enter a decimal number)
A hydrocarbon feed consisting of a mixture of propane (20%), isobutene (30%), isopentane (20%), and n-pentane...
A hydrocarbon feed consisting of a mixture of propane (20%), isobutene (30%), isopentane (20%), and n-pentane (30%) is fractionated at a rate of 100 kg/h into a distillate that contains all the propane and 78% of the isopentane in the feed. The mole fraction of isobutane in the distillate is 0.378. The bottom stream contains all the n-pentane fed to the unit. Determine the flow rate of the bottom stream. provide a flow chart with component and mass of each...
1 – Calculate the adiabatic flame temperature of propane combustion with 50% excess air. 2– Use...
1 – Calculate the adiabatic flame temperature of propane combustion with 50% excess air. 2– Use an online adiabatic flame calculator to calculate the adiabatic flame temperature of propane with air in increments of 0.1 equivalence ratio from 0.5 to 1.2. Plot your results and determine the point that the flame has the maximum T. Compare your results with that of Problem 1.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT