Question

In: Chemistry

An unknown element has the following ionization energies:

An unknown element has the following ionization energies:

Please answer all questions


IE1 = 570 kJ/mol   

IE2 = 1431 kJ/mol   

IE3 = 2023 kJ/mol       

IE4 = 10,521 kJ/mol  

IE5 = 13,288 kJ/mol

            

a) Based on this information, how many valence electrons does this element have?

Explain your answer.


b) In view of your answer in part a), what charge would this element likely form, and would it be a metal or non-metal?  (Assume it is not a metalloid).  Explain.


Solutions

Expert Solution

a) we can see from the given data there is a spike in ionisation energy values at IE4, which generally happens when it has already reached octet configuration. So we can say that it has 3 valance electrons and after the removal of these three valency electrons, it will attain some stable full-filled configuration may be an octet configuration and removing the next electron i.e; the fourth electron will be harder and requires a lot of energy to do it, so there will be a spike in ionisation energies here.

There, this atom has 3 valency electrons.

b) Since it has 3 valency electrons, it may form an ion with charge +3 because then it will obtain a stable electronic configuration.

Non-metals gain electrons and metals lose electrons. So if an element is losing electron then it is metal.


Related Solutions

The first two ionization energies of an unknown element are as follows: 1st I.E = 496...
The first two ionization energies of an unknown element are as follows: 1st I.E = 496 kJ/mol 2nd I.E = 4560 kJ/mol Predict which group this element belongs to and write down the electron configuration of its valence electrons Q2. Explain why the first ionization energy of sulfur is inferior to that of phosphorus
Table 4.1: Ionization Energies Complete the ionization energies for each element.
Table 4.1: Ionization EnergiesComplete the ionization energies for each element.ElementHHeLiBeBCNOFNeNaMgAlAtomic Number12345678910111213Ioni zationEnergies1st1312237252090080110872nd-52517298175723532856338833743952456214513rd--118151484946204578530160506122691077334th---21007622374757469840893719543105435th----37831944510990110231217713354136306th-----472775326713327151641523816613180207th------6436071330178681999920117217118th-------84078920382307025496256619th--------106434115380289323165310th---------1314321413623545811th----------15907516998812th-----------1893682.    Explain how the successive (first, second, third, etc) ionization potentials change in each atom.3.     For most atoms, there are one or two huge jumps in the ionization potential.   Explain why these occur. In aluminum, explain these huge increases using the valence electrons.4.      Explain any trend you observe when looking at only the first ionization energies of each of the 13 elements.
An element of the third period has the following ionization energies in KJ/mol
An element of the third period has the following ionization energies in KJ/mol: IE1 = 1012, IE2 = 1903, IE3 = 2910, IE4 = 4956, IE5 = 6278 and IE6 = 22,230. USing only this data determine which one is the element.
The ionization energies for a hypothetical element are listed below. Based on these ionization energies, identify...
The ionization energies for a hypothetical element are listed below. Based on these ionization energies, identify which group the element would be from on the Periodic Table. IE1 (kJ/mol) IE2 (kJ/mol) IE3 (kJ/mol) IE4 (kJ/mol) IE5 (kJ/mol) IE6 (kJ/mol) 600 1200 7300 9580 12,600 14,640
An element Y has the ionization energies shown in the table. Element Y is likely_____ a....
An element Y has the ionization energies shown in the table. Element Y is likely_____ a. K b. Br c. Ca d. Si Ionization energy table: first 419 kj/mol, 2nd 3051 kJ/mol, 3rd 4411 kJ/mol Please explain why
An element in the 4th row of the periodic table has the following ionization energies: i1...
An element in the 4th row of the periodic table has the following ionization energies: i1 = 762kJ/mol, i2 = 1021 kJ/mol, i3 = 1203 kJ/mol, i4 = 1402 kJ/mol, i5 = 5002 kJ/mol, i6 = 8321 kJ/mol, i7 = 10243 kJ/mol, i8 = 13210 kJ/mol What is the identity of the element?
The successive ionization energies for an unknown element are IE1 = 896 kJ/mol IE2 =1752 kJ/mol...
The successive ionization energies for an unknown element are IE1 = 896 kJ/mol IE2 =1752 kJ/mol IE3 =14,807 kJ/mol IE4 =17,948 kJ/mol To which family in the periodic table does the unknown element most likely belong?
Identify the element of Period 2 that has the following successive ionization energies, in kJ/mol. IE1...
Identify the element of Period 2 that has the following successive ionization energies, in kJ/mol. IE1 = 1314   IE2 = 3389   IE3 = 5298   IE4 = 7471   IE5 = 10992 IE6 = 13329    IE7 = 71345    IE8 = 84087 Li Ne B O
Identify the element of Period 3 which has the following successive ionization energies, in kJ/mol
Identify the element of Period 3 which has the following successive ionization energies, in kJ/mol
An element has the following first through fourth ionization energies (in kJ/mol): 700; 1500; 7700; 10500....
An element has the following first through fourth ionization energies (in kJ/mol): 700; 1500; 7700; 10500. Deduce to which column of the periodic table it porbably belongs. Give your reasoning
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT