Question

In: Statistics and Probability

A certain virus infects one in every 400 people. A test used to detect the virus...

A certain virus infects one in every 400 people. A test used to detect the virus in a person is positive 90% of the time if the person has the virus and 10% of the time if the person does not have the virus. Let A be the event "the person is infected" and B be the event "the person tests positive."

(a) Find the probability that a person has the virus given that they have tested positive.



(b) Find the probability that a person does not have the virus given that they have tested negative.

Solutions

Expert Solution

Solution:

Given:

A certain virus infects one in every 400 people.

A test used to detect the virus in a person is positive 90% of the time if the person has the virus and

10% of the time if the person does not have the virus.

Let A = "the person is infected" and B = "the person tests positive."

Thus we have:

P(A) = 1/400=0.0025

then P("the person is NOT infected") = P(Ac) = 1 - P(A) = 1 - 0.0025 = 0.9975

P(B|A) = 90% = 0.90

P(Bc|A) = 1- P(B|A) = 1 - 0.90 = 0.10

P(B|Ac) = 10% = 0.10

and

P(Bc|Ac) =1-P(B|Ac) = 1 - 0.10 = 0.90

Part a) Find  the probability that a person has the virus given that they have tested positive.

P( A | B) =.............?

Using Bayes rule:

Part b) Find the probability that a person does not have the virus given that they have tested negative

P( Ac | Bc) =.............?

Using Bayes rule:


Related Solutions

A certain virus infects one in every 400 people. A test used to detect the virus...
A certain virus infects one in every 400 people. A test used to detect the virus in a person is positive 80% of the time if the person has the virus and 8% of the time if the person does not have the virus. (This 8% result is called a false positive.) Let A be the event "the person is infected" and B be the event "the person tests positive". a) Find the probability that a person has the virus...
A certain virus infects one in every 400 people. A test used to detect the virus...
A certain virus infects one in every 400 people. A test used to detect the virus in a person is positive 85% of the time if the person has the virus and 5% of the time if the person does not have the virus. (This 5% result is called a false positive). Let A be the event "the person has the virus" and B be the event "the person tests positive". 1) Find the probability that A person has the...
A certain virus infects one in every 150 people. A test used to detect the virus...
A certain virus infects one in every 150 people. A test used to detect the virus in a person is positive 80% of the time when the person has the virus and 55​% of the time when the person does not have the virus.​ (This 55​% result is called a false positive​.) Let A be the event​ "the person is​ infected" and B be the event​ "the person tests​ positive." ​(a) Using​ Bayes' Theorem, when a person tests​ positive, determine...
A certain virus infects 10 in every 1000 people.   A test used to detect the virus...
A certain virus infects 10 in every 1000 people.   A test used to detect the virus in a person is positive 80% of the time when the person has the virus (20% false negative), and 5% of the time when the person does not have the virus (5% false positive). That is 20% of of the time when the test should be positive but didn't, and 5% of the time the test indicated positive and shouldn't. 1) Out of all...
A certain virus infects 1 in every 600 people. A test used to detect the virus...
A certain virus infects 1 in every 600 people. A test used to detect the virus in a person is positive 90% of the time if the person has the virus and 10% of the time if the person does not have the virus. Let A be the event that the 'person is infected' and B be the event that the 'person tests positive' A: Find the probability that the person has the virus given that they tested positive B:...
The Covid-19 virus infects 10% of the people in a certain community. A test used to...
The Covid-19 virus infects 10% of the people in a certain community. A test used to detect the virus in a person is positive 85% of the time if the person has the virus and 5% of the time if the person does not have the virus. (This 5% result is called a false positive). Let A be the event "the person has the virus" and B be the event "the person tests positive". a) Find the probability that the...
A certain medical test is known to detect 72% of the people who are afflicted with...
A certain medical test is known to detect 72% of the people who are afflicted with the disease Y. If 10 people with the disease are administered the test, what is the probability that the test will show that: All 10 have the disease, rounded to four decimal places? At least 8 have the disease, rounded to four decimal places? At most 4 have the disease, rounded to four decimal places?
A certain medical test is known to detect 73% of the people who are afflicted with...
A certain medical test is known to detect 73% of the people who are afflicted with the disease Y. If 10 people with the disease are administered the test, what is the probability that the test will show that: All 10 have the disease, rounded to four decimal places? At least 8 have the disease, rounded to four decimal places? At most 4 have the disease, rounded to four decimal places? Assume that 39% of people are left-handed. If we...
A certain medical test is known to detect 50% of the people who are afflicted with...
A certain medical test is known to detect 50% of the people who are afflicted with the disease Y. If 10 people with the disease are administered the test, what is the probability that the test will show that: All 10 have the disease, rounded to four decimal places? At least 8 have the disease, rounded to four decimal places? At most 4 have the disease, rounded to four decimal places?
A certain medical test is known to detect 49% of the people who are afflicted with...
A certain medical test is known to detect 49% of the people who are afflicted with the disease Y. If 10 people with the disease are administered the test, what is the probability that the test will show that: All 10 have the disease, rounded to four decimal places? At least 8 have the disease, rounded to four decimal places? At most 4 have the disease, rounded to four decimal places?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT