Question

In: Statistics and Probability

A certain virus infects 10 in every 1000 people.   A test used to detect the virus...

A certain virus infects 10 in every 1000 people.  

A test used to detect the virus in a person is positive 80% of the time when the person has the virus (20% false negative), and 5% of the time when the person does not have the virus (5% false positive).

That is 20% of of the time when the test should be positive but didn't, and 5% of the time the test indicated positive and shouldn't.

1) Out of all people who tested positive, what portion is really infected? In other word, if a person is tested positive, what is the probability that the person is infected by the virus?

2) If the infection rate for the population is 50 in every 1000 people, then when a person is tested positive what is the probability that the person is really infected by the virus?  

3) If we are able to improve the accuracy, the false negative rate was reduced to 10% and the false positive rate was reduced to 3%. And the population infection rate remains at 10 in 1000 people. Under this scenario, if a person is tested positive what is the probability that the person is really infected by the virus?

4) Use your answer from part 1) as the baseline, compare your answers from 2) and 3) with the baseline. How did the probability change (increase or decrease) when the population infection rate increased from 10 in 1000 to 50 in 1000? How did the probability change (increase or decrease) when the test accuracy was improved?

Solutions

Expert Solution


Related Solutions

A certain virus infects 1 in every 600 people. A test used to detect the virus...
A certain virus infects 1 in every 600 people. A test used to detect the virus in a person is positive 90% of the time if the person has the virus and 10% of the time if the person does not have the virus. Let A be the event that the 'person is infected' and B be the event that the 'person tests positive' A: Find the probability that the person has the virus given that they tested positive B:...
A certain virus infects one in every 400 people. A test used to detect the virus...
A certain virus infects one in every 400 people. A test used to detect the virus in a person is positive 90% of the time if the person has the virus and 10% of the time if the person does not have the virus. Let A be the event "the person is infected" and B be the event "the person tests positive." (a) Find the probability that a person has the virus given that they have tested positive. (b) Find...
A certain virus infects one in every 400 people. A test used to detect the virus...
A certain virus infects one in every 400 people. A test used to detect the virus in a person is positive 80% of the time if the person has the virus and 8% of the time if the person does not have the virus. (This 8% result is called a false positive.) Let A be the event "the person is infected" and B be the event "the person tests positive". a) Find the probability that a person has the virus...
A certain virus infects one in every 400 people. A test used to detect the virus...
A certain virus infects one in every 400 people. A test used to detect the virus in a person is positive 85% of the time if the person has the virus and 5% of the time if the person does not have the virus. (This 5% result is called a false positive). Let A be the event "the person has the virus" and B be the event "the person tests positive". 1) Find the probability that A person has the...
A certain virus infects one in every 150 people. A test used to detect the virus...
A certain virus infects one in every 150 people. A test used to detect the virus in a person is positive 80% of the time when the person has the virus and 55​% of the time when the person does not have the virus.​ (This 55​% result is called a false positive​.) Let A be the event​ "the person is​ infected" and B be the event​ "the person tests​ positive." ​(a) Using​ Bayes' Theorem, when a person tests​ positive, determine...
The Covid-19 virus infects 10% of the people in a certain community. A test used to...
The Covid-19 virus infects 10% of the people in a certain community. A test used to detect the virus in a person is positive 85% of the time if the person has the virus and 5% of the time if the person does not have the virus. (This 5% result is called a false positive). Let A be the event "the person has the virus" and B be the event "the person tests positive". a) Find the probability that the...
A certain medical test is known to detect 72% of the people who are afflicted with...
A certain medical test is known to detect 72% of the people who are afflicted with the disease Y. If 10 people with the disease are administered the test, what is the probability that the test will show that: All 10 have the disease, rounded to four decimal places? At least 8 have the disease, rounded to four decimal places? At most 4 have the disease, rounded to four decimal places?
A certain medical test is known to detect 73% of the people who are afflicted with...
A certain medical test is known to detect 73% of the people who are afflicted with the disease Y. If 10 people with the disease are administered the test, what is the probability that the test will show that: All 10 have the disease, rounded to four decimal places? At least 8 have the disease, rounded to four decimal places? At most 4 have the disease, rounded to four decimal places? Assume that 39% of people are left-handed. If we...
A certain medical test is known to detect 50% of the people who are afflicted with...
A certain medical test is known to detect 50% of the people who are afflicted with the disease Y. If 10 people with the disease are administered the test, what is the probability that the test will show that: All 10 have the disease, rounded to four decimal places? At least 8 have the disease, rounded to four decimal places? At most 4 have the disease, rounded to four decimal places?
A certain medical test is known to detect 49% of the people who are afflicted with...
A certain medical test is known to detect 49% of the people who are afflicted with the disease Y. If 10 people with the disease are administered the test, what is the probability that the test will show that: All 10 have the disease, rounded to four decimal places? At least 8 have the disease, rounded to four decimal places? At most 4 have the disease, rounded to four decimal places?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT