Question

In: Mechanical Engineering

A simple saturation cycle of refrigeration system is operating on R22. This system has an evaporator...

A simple saturation cycle of refrigeration system is operating on R22. This system has an evaporator pressure of 350 kPa, condensing pressure of 1550 kPa and a discharge temperature of 80°C. Degree of sub cooling of 8 K and degree of superheat of 5 K. Draw p – h diagram and calculate the following.

a. Refrigeration Effect.

b. Refrigerant mass flow rate, at a plant capacity of 196 kW.

c. Power input into the compressor.

d. Coefficient of performance of the plant.

e. Compressor efficiency.

f. Total heat rejection.

g. Amount of condenser water required if LMTD of the water cooled condenser is limited to 8 K and the design ambient temperature is 20°C wet bulb.

Solutions

Expert Solution


Related Solutions

Refrigerant 134a enters the evaporator of a refrigeration system operating at steady state at -4oC and...
Refrigerant 134a enters the evaporator of a refrigeration system operating at steady state at -4oC and a quality of 20% at a velocity of 6 m/s. At the exit, the refrigerant is a saturated vapor at -4oC. The evaporator flow channel has constant diameter of 1.7 cm. Determine the mass flow rate of the refrigerant, in kg/s, and the velocity at the exit, in m/s.
refrigerant 134a enters the evaporator of a refrigeration system operating at steady state at -12°C and...
refrigerant 134a enters the evaporator of a refrigeration system operating at steady state at -12°C and a quality of 20% at a velocity of 7 m/s. At the exit, the refrigerant is a saturated vapor at -12°C. The evaporator flow channel has constant diameter of 1.7cm. Determine the mass flow rate of the refrigerant in kg/s Determine the velocity at the exit in m/s
A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger.
A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant at 40 ℃ leaving the condenser and enteringthe heat exchanger is used to superheat the saturated vapor refrigerant leaving the evaporator at 7 ℃ by 8 ℃. If the compressor is capable of pumping 5 1/s of vapor refrigerant measuredat the inlet to the compressor and the compression processes are considered isentropic in both cases listed below, determine; (a) The refrigerating capacity in kW,...
A single stage simple vapr compression refrigeration cycle using R12 refrigerant is operating at a condenser...
A single stage simple vapr compression refrigeration cycle using R12 refrigerant is operating at a condenser temperature of 40 degrees C and an evaporator temperature of -5 degrees C. If the compressor is a reciprocating type compressor with 4 cylinder, rotating at 1800 RPM, has a cylinder diameter of 5cm, stroke length to diameter ratio of 1.4, and clearance ratio of 5%. Assume a polytropic index to be 1.13. 1- Sketch the cycle flow diagram, and identify the states on...
A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant...
A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant at 40 °C leaving the condenser and entering the heat exchanger is used to superheat the saturated vapor refrigerant leaving the evaporator at 7 °C by 8 °C. If the compressor is capable of pumping 5 l/s of vapor refrigerant measured at the inlet to the compressor and the compression processes are considered isentropic in both cases listed below, determine; (a) The refrigerating capacity...
Q/ A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid...
Q/ A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant at 40 °C leaving the condenser and entering the heat exchanger is used to superheat the saturated vapor refrigerant leaving the evaporator at 7 °C by 8 °C. If the compressor is capable of pumping 5 l/s of vapor refrigerant measured at the inlet to the compressor and the compression processes are considered isentropic in both cases listed below, determine; (a) The refrigerating...
12-5. An air-cycle unit operating on the simple system is designed for the following   conditions: 15...
12-5. An air-cycle unit operating on the simple system is designed for the following   conditions: 15 lb/min of conditioned air, air entering the turbine at 60 psia, cabin pressure 14 psia, dry-air rated discharge temperature 20 F, and a turbine efficiency of 80 per cent. a. At what temperature does air enter the turbine? b. How much power does the turbine supply to the fan?
A combined cycle power system uses a simple gas-turbine Brayton cycle in conjunction with a simple...
A combined cycle power system uses a simple gas-turbine Brayton cycle in conjunction with a simple Rankine cycle to produce a total power of 100 MW. In such configuration, the exhaust stream from the gas turbine is used as the heat source for the steam power cycle in a heat exchanger as shown in the figure. The following data are known for the gas-turbine cycle. Atmospheric air enters the compressor at 100 kPa and 20oC, the compressor pressure ratio is...
design a vapor compression refrigeration system that will maintain the refrigerated space at -15c while operating...
design a vapor compression refrigeration system that will maintain the refrigerated space at -15c while operating in an environment at 20c using refrigerant -134a as the working fluid (By EES )please
Thermodynamics The centrifugal compressor in a refrigeration system operating at steady state conditions, compresses adiabatically 0.1...
Thermodynamics The centrifugal compressor in a refrigeration system operating at steady state conditions, compresses adiabatically 0.1 lbm/s of saturated R-134a vapor at 0°F to 200 psia. Answer the following. a. Create a schematic representation of your system and draw the boundary you would use to solve the questions in this problem. b. Represent the process on a T-s diagram. c. Calculate the minimum work required by this compressor, in hp. Note: the solution to this problem requires interpolations; use your...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT