Question

In: Physics

A 210 turn flat coil of wire 25.0 cm in diameter acts as an antenna for...

A 210 turn flat coil of wire 25.0 cm in diameter acts as an antenna for FM radio at a frequency of 100 MHz. The Magnetic field of the incoming electromagnetic wave is perpendicular to the coil and has a maximum strength of 9.30*10^-13 T.

What power is incident on the coil?

What average emf is induced in the coil over one-fourth of a cycle?

If the radio receiver has an inductance of 2.30 microH, what capacitance must it have to resonate at 100 MHz.

Solutions

Expert Solution

(a)

Power incident can be found as

P = IA

where I is intensity and A is area

I = cB2 / 2uo = 3e8 * 9.3e-132 / 2 * 4e-7 = 1.0324e-10 W

A = d2 / 4 = (0.25)2 / 4 = 0.049087 m2

so,

P = IA

P = 5.06778e-12 W

--------------------------------------------------------------------

(b)

Emf = Nd / dt

Emf = NBA / dt

Emf = Nd2B / 4 t

we need to find emf over one - fourth of a cycle

so,

t = T / 4

Emf = Nd2B / T

also,

T = 1/f

so,

Emf = Nd2B f

Emf = 210 * * 0.252 * 9.30e-13 * 100e6

Emf = 3.835e-3 V

or

Emf = 3.835 mV

--------------------------------------------------------------------------

(c)

we can use the resonant frequency equation

Solve for C, we get

C = 1 / 42Lf2

C = 1 / 42 * 2.30e-6 * 100e62

C = 1.1013e-12 F

or

C = 1.1013 pF


Related Solutions

An 1200-turn coil of wire that is 2.4 cm in diameter is in a magnetic field...
An 1200-turn coil of wire that is 2.4 cm in diameter is in a magnetic field that drops from 0.12 T to 0 TT in 10 ms . The axis of the coil is parallel to the field. part A) What is the emf of the coil? Express your answer in volts.
A 40-turn coil has a diameter of 11 cm. The coil is placed in a spatially...
A 40-turn coil has a diameter of 11 cm. The coil is placed in a spatially uniform magnetic field of magnitude 0.40 T so that the face of the coil and the magnetic field are perpendicular. Find the magnitude of the emf induced in the coil (in V) if the magnetic field is reduced to zero uniformly in the following times. (a) 0.30 s V (b) 3.0 s V (c) 65 s V
A 410-turn solenoid, 21 cm long, has a diameter of 4.0 cm . A 12-turn coil...
A 410-turn solenoid, 21 cm long, has a diameter of 4.0 cm . A 12-turn coil is wound tightly around the center of the solenoid. If the current in the solenoid increases uniformly from 0 to 5.0 A in 0.51 s , what will be the induced emf in the short coil during this time?
A 450-turn solenoid, 24 cm long, has a diameter of 2.2 cm . A 10-turn coil...
A 450-turn solenoid, 24 cm long, has a diameter of 2.2 cm . A 10-turn coil is wound tightly around the center of the solenoid. If the current in the solenoid increases uniformly from 0 to 2.9 A in 0.57 s , what will be the induced emf in the short coil during this time? Please explain each step. Thanks!
A circular coil with a diameter of 25.0 cm and 158 turns rotates about a vertical...
A circular coil with a diameter of 25.0 cm and 158 turns rotates about a vertical axis with an angular speed of 1230 rpm . The only magnetic field in this system is that of the Earth. At the location of the coil, the horizontal component of the magnetic field is 3.81×10−5T, and the vertical component is 2.85×10−5T. Find the maximum emf induced in the coil. Answer in mV
A 0.500 mm diameter copper wire makes up a 136 turns, 7.60 cm diameter coil. There...
A 0.500 mm diameter copper wire makes up a 136 turns, 7.60 cm diameter coil. There is a magnetic field parallel to the axis of the coil. If the induced current in the coil is 2.80 A, what is the rate of change of the magnetic field? a) 0.0839 T/s b) 3.63×10-6 T/s c) 12.8 T/s d) 1.74×103 T/s
A 45 turn, 2.9 cm diameter coil is inside a pulsed magnet that has been off...
A 45 turn, 2.9 cm diameter coil is inside a pulsed magnet that has been off for some time, so the magnet can cool down. The magnet is turned on, and the magnetic field increases as B(t) = Bmax [1 − e−3.1 t ], where t is in seconds and Bmax = 31.9 T. The field is perpendicular to the plane of the coil. What is the magnitude of the EMF induced in the coil at t = 0.403 s...
A 33 cm diameter coil consists of 19 turns of cylindrical copper wire 2.8 mm in...
A 33 cm diameter coil consists of 19 turns of cylindrical copper wire 2.8 mm in diameter. A uniform magnetic field, perpendicular to the plane of the coil, changes at a rate of 9.50
   A flat coil of wire is placed in a uniform magnetic field that is in the...
   A flat coil of wire is placed in a uniform magnetic field that is in the y direction. (i) The magnetic flux through the coil is maximum if the coil is (a) in the xy plane(b) in either the xy or the yz plane (c) in the xz plane (d) in any orientation, because it is constant. (ii) For what orientation is the flux zero? Choose from the same possibilities.
A square, 32.0- turn coil that is 11.0 cm on a side with a resistance of...
A square, 32.0- turn coil that is 11.0 cm on a side with a resistance of 0.770Ω is placed between the poles of a large electromagnet. The electromagnet produces a constant, uniform magnetic field of 0.550 T directed out of the screen. As suggested by the figure, the field drops sharply to zero at the edges of the magnet. The coil moves to the right at a constant velocity of 2.70 cm/s. A shaded, rectangular region of uniformly distributed dots...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT