In: Accounting
QUESTION #5:
X Company is considering buying a new machine that will cost $150,000 and that will generate annual cash inflows of $31,470 for 6 years.
What is the approximate internal rate of return?
Internal rate of return is the rate at which Net Present value is zero. | |||||||||||||||
Discount rate and Present value of cash inflows has adverse relation. It means if discount rate increases , net present value decreases | |||||||||||||||
and vice versa. | |||||||||||||||
Suppose discount rate is 10% | |||||||||||||||
Present Value of annuity of 1 for 6 years @ 10% | = | (1-(1+i)^-n)/i | Where, | ||||||||||||
= | (1-(1+0.10)^-6)/0.10 | i | 10% | ||||||||||||
= | 4.355260699 | n | 6 | ||||||||||||
Present Value of annual cash inflows | = | Annual cash inflows x Present value of annuity of 1 | |||||||||||||
= | $ 31,470.00 | x | 4.355261 | ||||||||||||
= | $ 1,37,060.05 | ||||||||||||||
Present value of annual cash inflows | $ 1,37,060.05 | ||||||||||||||
Less cost of machine | $ 1,50,000.00 | ||||||||||||||
Net Present Value | $ -12,939.95 | ||||||||||||||
since in the above case, Net Present value is negative.It means Internal rate of return is lower than 10% to increase negative Net Present Value to Zero. | |||||||||||||||
Suppose discount rate is 5% | |||||||||||||||
Present Value of annuity of 1 for 6 years @ 5% | = | (1-(1+i)^-n)/i | Where, | ||||||||||||
= | (1-(1+0.05)^-6)/0.05 | i | 5% | ||||||||||||
= | 5.07569 | n | 6 | ||||||||||||
Present Value of annual cash inflows | = | Annual cash inflows x Present value of annuity of 1 | |||||||||||||
= | $ 31,470.00 | x | 5.07569 | ||||||||||||
= | $ 1,59,732.03 | ||||||||||||||
Present value of annual cash inflows | $ 1,59,732.03 | ||||||||||||||
Less cost of machine | $ 1,50,000.00 | ||||||||||||||
Net Present Value | $ 9,732.03 | ||||||||||||||
At 5%, Net Present value , Net Present value is more than zero, It means Internal rate of return is more than 5%. | |||||||||||||||
Now, we can uderstand that Internal rate of return is between 5% and 10%, because zero Net Present value is coming within such rate. | |||||||||||||||
So, Approximate Internal rate of return | = | L+((H-L)*(A/(A-(A-B))) | Where, | ||||||||||||
= | 5%+(5%*(9732.03/22671.98)) | L | 5% | ||||||||||||
= | 7.15% | H | 10% | ||||||||||||
H-L | 5% | ||||||||||||||
Thus, Approximate Internal rate of return is 7.15% or 7% | A | $ 9,732.03 | |||||||||||||
B | $ -12,939.95 | ||||||||||||||
A-B | $ 22,671.98 | ||||||||||||||