Question

In: Chemistry

how to find density when given the radius of a body-centered cubic cell

how to find density when given the radius of a body-centered cubic cell

Solutions

Expert Solution

Calculation of density of unit cell

Knowing the unit cell dimensions, the density of a crystalline substance can be calculated as follows:

Let the molecular weight of a crystalline substance be ‘M’. Let the Avogadro’s number be ‘N0’. ‘Z’ is the number of atoms present per unit cell and ‘p’ is the density of the unit cell or of the substance. The unit cell length is ‘a’, so that the volume of the unit cell is ‘a3’ (=V). Then the mass corresponding to each lattice point = .

The mass of ‘Z’ lattice points = .

i.e. density of the unit cell = = =

ρ =

Where

ρ = density

Z = no. of atoms per unit cell = for BCC = 2

M = mol. Wt. of the lattice particle

a = unit cell length.


Related Solutions

A metal (FW 379.9 g/mol) crystallizes into a body-centered cubic unit cell and has a radius...
A metal (FW 379.9 g/mol) crystallizes into a body-centered cubic unit cell and has a radius of 2.36 angstrom (1 anstrom = 1x10-10 m). What is the density of this metal in g/cm3?
An element crystallizes in a body-centered cubic lattice. The edge of the unit cell is 3.28...
An element crystallizes in a body-centered cubic lattice. The edge of the unit cell is 3.28 Å in length, and the density of the crystal is 6.50 g/cm3 . a.) Calculate the atomic weight of the element.
The element lead (Pb) crystallizes with a Face Centered Cubic unit cell. The density of lead...
The element lead (Pb) crystallizes with a Face Centered Cubic unit cell. The density of lead is 11.3 g/cm3. Use this information to calculate the theoretical metallic radius of a lead atom in picometers. 1 pm = 1×10−12 meters [Note: The theoretical value for the metallic radius may be different from the experimentally determined value. Simply Googling the value of atomic radius may not yield the correct result]
- Calculate the atomic packing factor for Face Centered cubic and Body Centered Cubic crystal structures
- Calculate the atomic packing factor for Face Centered cubic and Body Centered Cubic crystal structures
A) A metal (FW 295.6 g/mol) crystallizes into a body-centered cubic unit cell and has a...
A) A metal (FW 295.6 g/mol) crystallizes into a body-centered cubic unit cell and has a radius of 2.89 Angstrom. What is the density of this metal in g/cm3? B) A metal (FW 339.6 g/mol) crystallizes into a face-centered cubic unit cell and has a radius of 2.84 Angstrom. What is the density of this metal in g/cm3?
Face Centered Cubic unit cell problem
An element has a face centered cubic unit cell with a length of 352.4 pm along an edge.The density of the element is 8.9 gcm-3.How many atoms are present in 100g of an element?  
To calculate the number of atoms in a face centered cubic cell?
To calculate the number of atoms in a face centered cubic cell?
Palladium crystallizes in a face-centered cubic unit cell. Its density is 12.02 g/cm^3 .Calculate the atomic...
Palladium crystallizes in a face-centered cubic unit cell. Its density is 12.02 g/cm^3 .Calculate the atomic radius of Pd. A) calculate the average mass of 1pd atom B) calculate the number of pd atoms in FCC C) use the density to calculate the volume D) Determine the edge lenth using volume E) determine the atomic radius using the pythagorean theorem .
The radius of an atom of an element is 55 pm. What is the edge length of the unit cell if it is body-centred cubic?
The radius of an atom of an element is 55 pm. What is the edge length of the unit cell if it is body-centred cubic (BCC)?
1. Vanadium crystallizes in a body-centered cubic lattice, and the length of the edge of a...
1. Vanadium crystallizes in a body-centered cubic lattice, and the length of the edge of a unit cell is 305 pm. what is the density of V? 2. Vanadium crystallizes in a face-centered cubic lattice, and the length of the edge of a unit cell is 305 pm. what is the density of V? 3. Vanadium crystallizes in a single-centered cubic lattice, and the length of the edge of a unit cell is 305 pm. what is the density of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT