Question

In: Chemistry

When [Ag+] = 1.05 M, the observed cell potential at 298K for an electrochemical cell with...

When [Ag+] = 1.05 M, the observed cell potential at 298K for an electrochemical cell with the reaction shown below is 3.268 V. What is the Mg2+ concentration in this cell?

2Ag+(aq) + Mg(s)-->2Ag(s) + Mg2+(aq)

Solutions

Expert Solution

Given data:

The reactio in the electrochemical cell is

2Ag+(aq) + Mg(s)-->2Ag(s) + Mg2+(aq)

From Nernst equation, we can write

E(cell) = Eo(cell) - (0.059/n)*Log([P]/[R])

Here, Eocell = Eo(ox) + Eo(red); Here Eo(ox) = Eo(Mg/Mg2+) and Eo(red) = Eo(Ag+/Ag)

                   = 2.37 + 0.80, i.e. 3.17 V

E(cell) = 3.267 V, [Ag+] = 1.05 M

And n = 2, [P] = [Mg2+], [R] = [Ag+]^2

Therefore, 3.267 = 3.17 - (0.059/2)*Log{[Mg2+]/(1.05)^2}

                        = 3.17 - 0.0295*Log{[Mg2+]/1.1025}

      3.267 - 3.17 = -0.0295*Log{[Mg2+]/1.1025}

               0.097 = -0.0295*Log{[Mg2+]/1.1025}

Log{[Mg2+]/1.1025} = -0.097/0.0295, i.e. -3.288

       [Mg2+]/1.1025 = 10^( -3.288), i.e. 5*10^-4

Hence         [Mg2+] = 5.68*10^-4 M


Related Solutions

When the Ag+ concentration is 1.31 M, the observed cell potential at 298K for an electrochemical...
When the Ag+ concentration is 1.31 M, the observed cell potential at 298K for an electrochemical cell with the following reaction is 1.672V. What is the Zn2+ concentration? 2Ag+(aq) + Zn(s)---->2Ag(s) + Zn2+(aq) Answer: _______M
1) When the Ag+ concentration is 1.08 M, the observed cell potential at 298K for an...
1) When the Ag+ concentration is 1.08 M, the observed cell potential at 298K for an electrochemical cell with the following reaction is 1.654V. What is the Zn2+ concentration? 2Ag+(aq) + Zn(s) > 2Ag(s) + Zn2+(aq) Answer: ___ M 2) A concentration cell similar to the one shown is composed of two Cr electrodes and solutions of different Cr3+concentrations. The left compartment contains 1.32 M Cr3+, and the right compartment contains 0.250 M Cr3+. Calculate the cell potential for this...
Part A. When the Cu2+ concentration is 1.24 M, the observed cell potential at 298K for...
Part A. When the Cu2+ concentration is 1.24 M, the observed cell potential at 298K for an electrochemical cell with the following reaction is 2.820V. What is the Mg2+ concentration? Cu2+(aq) + Mg(s) ----> Cu(s) + Mg2+(aq) Answer: ________ M Part B. When the Hg2+ concentration is 1.13 M, the observed cell potential at 298K for an electrochemical cell with the following reaction is 1.718V. What is the Zn2+ concentration? Hg2+(aq) + Zn(s) -----> Hg(l) + Zn2+(aq) Answer: _______ M
What is the calculated value of the cell potential at 298K for an electrochemical cell with...
What is the calculated value of the cell potential at 298K for an electrochemical cell with the following reaction, when the Hg2+ concentration is 6.28×10-4 M and the Al3+ concentration is 1.43 M ? 3Hg2+(aq) + 2Al(s)------>3Hg(l) + 2Al3+(aq) Answer: ____V The cell reaction as written above is spontaneous for the concentrations given: _______(true)(false)
What is the calculated value of the cell potential at 298K for an electrochemical cell with...
What is the calculated value of the cell potential at 298K for an electrochemical cell with the following reaction, when the Hg2+ concentration is 1.18 M and the Mn2+ concentration is 8.88×10-4 M ? Hg2+(aq) + Mn(s)------>Hg(l) + Mn2+(aq) Answer: ___V The cell reaction as written above is spontaneous for the concentrations given: _______(true)(false)
What is the calculated value of the cell potential at 298K for an electrochemical cell with...
What is the calculated value of the cell potential at 298K for an electrochemical cell with the following reaction, when the Ag+ concentration is 1.49 M and the Al3+ concentration is 3.15×10-4 M ? 3Ag+(aq) + Al(s)3Ag(s) + Al3+(aq) Answer: in V The cell reaction as written above is spontaneous for the concentrations given: True or False What is the calculated value of the cell potential at 298K for an electrochemical cell with the following reaction, when the Ag+ concentration...
For the following electrochemical cell        Cu(s)|Cu^2+ (aq, 0.0155 M)||Ag^+ (aq, 3.50 M)|Ag(s) write the net cell...
For the following electrochemical cell        Cu(s)|Cu^2+ (aq, 0.0155 M)||Ag^+ (aq, 3.50 M)|Ag(s) write the net cell equation. Phases are optional. Do not include the concentrations. Calculate the following values at 25.0 °C using standard potentials as needed. Eocell delta Go reaction Ecell delta G reaction
Determine the standard cell potential and the cell potential under the stated conditions for the electrochemical...
Determine the standard cell potential and the cell potential under the stated conditions for the electrochemical reactions described here. State whether each is spontaneous or nonspontaneous under each set of conditions at 298.15 K. (a) Hg(l) + S2-(aq, 0.10 M) + 2Ag+(aq, 0.25 M) ⟶ 2Ag(s) + HgS(s) (b) The galvanic cell made from a half-cell consisting of an aluminum electrode in 0.015 M aluminum nitrate solution and a half-cell consisting of a nickel electrode in 0.25 M nickel(II) nitrate...
Consider the electrochemical cell described below: What is the cell potential (Ecell) for the voltaic cell...
Consider the electrochemical cell described below: What is the cell potential (Ecell) for the voltaic cell described below if the. Ag(s) çAg2CrO4 (Sat. Aq. Soln) çç Ag+ (0.125 M) ç Ag(s) a. What is the concentration of [Ag+] in the anode of the cell described above, if the Ksp of Silver (I) chromate is 1.1 x 10-12 ? b. What is the Ecell? c. Draw an overall cell diagram for this cell. Remember to label the cathode, anode, and electron...
The cell potential of a redox reaction occurring in an electrochemical cell under any set of...
The cell potential of a redox reaction occurring in an electrochemical cell under any set of temperature and concentration conditions can be determined from the standard cell potential of the cell using the Nernst equation E = E° − RT nF ln Q where E is the cell potential of the cell, E° is the standard cell potential of the cell, R is the gas constant, T is the temperature in kelvin, n is the moles of electrons transferred in...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT