In: Chemistry
Part A. When the Cu2+ concentration
is 1.24 M, the observed cell potential at 298K for
an electrochemical cell with the following reaction is
2.820V. What is the
Mg2+ concentration?
Cu2+(aq) +
Mg(s) ---->
Cu(s) +
Mg2+(aq)
Answer: ________ M
Part B. When the Hg2+ concentration
is 1.13 M, the observed cell potential at 298K for
an electrochemical cell with the following reaction is
1.718V. What is the
Zn2+ concentration?
Hg2+(aq) +
Zn(s) ----->
Hg(l) +
Zn2+(aq)
Answer: _______ M
Given:-
Part A.
molar concentration of [Cu2+] = 1.24 M
cell potential (Ecell) = 2.820 V.
Temperature(T) = 298 K
molar concentration of [Mg2+] = ?
As we know that
Cu2+(aq) + Mg(s)
Cu(s) + Mg2+(aq)
First half cell reaction at the anode:-
Mg(s) Mg2+(aq) + 2e- (oxidation) ; E0Mg/Mg2+ = - 2.37 V ----------------------- (1)
Second half cell reaction at the cathode:-
Cu2+(aq) + 2e- Cu(s) (reduction) ; E0Cu2+/Cu = 0.34 V --------------------------(2)
from equation no. 1 and 2 we get
Mg(s) Mg2+(aq) + 2e-
Cu2+(aq) + 2e- Cu(s)
------------------------------------------------------------------------------------------------
Cu2+(aq) + Mg(s) Cu(s) + Mg2+(aq) (cell reaction)
----------------------------------------------------------------------------------------
above equation shows that total no. of electron involves in cell reaction (n) = 2
As we know that according to the Nernst equation
Cell potential (Ecell) = E0Cell - 2.303RT/ nF log [Mg2+] / [Cu2+]
Ecell = ( E0cathode - E0anode) - 2.303RT/ nF log [Mg2+] / [Cu2+]
Ecell = ( E0Cu2+/Cu - E0Mg/Mg2+) - 2.303RT/ nF log [Mg2+] / [Cu2+]
2.820V = [ (0.34 V) - ( - 2.37 V)]- 2.303 8.314 J/K-mol 298 K / 2 96500 log [Mg2+] / [1.24 M]
2.820V = (0.34 V + 2.37 V)- 0.029563 J/mol (log[Mg2+] -log[1.24] )
2.820V = (2.71 V - 0.029563 V) (log[Mg2+] - 0.09342 )
2.820V = 2.6804 V (log[Mg2+] - 0.09342 )
(log[Mg2+] - 0.09342 ) = 2.820 V / 2.6804 V
log[Mg2+] - 0.09342 = 1.05208
log[Mg2+] = 1.05208 + 0.09342
log[Mg2+] = 1.1455
[Mg2+] = 13.979769 M ( i.e the answer)
Part B.
molar concentration of [Hg2+] = 1.13 M
cell potential (Ecell) = 1.718 V
Temperature(T) = 298 K
molar concentration of [Zn2+] = ?
As we know that
Hg2+(aq) + Zn(s)
Hg(l) + Zn2+(aq)
First half cell reaction at the anode:-
Zn(s) Zn2+(aq) + 2e- (oxidation) ; E0Zn /Zn2+ = - 0.76 V -------------------- (1)
Second half cell reaction at the cathode:-
Hg2+(aq) + 2e- Hg(l) (reduction) ; E0Hg2+ /Hg = 0.85 V -------------------------(2)
from equation no. 1 and 2 we get
Zn(s) Zn2+(aq) + 2e-
Hg2+(aq) + 2e- Hg(l)
------------------------------------------------------------------------------------------------
Hg2+(aq) + Zn(s) Hg(l) + Zn2+(aq) (cell reaction)
----------------------------------------------------------------------------------------
above equation shows that total no. of electron involves in cell reaction (n) = 2
As we know that according to the Nernst equation
Cell potential (Ecell) = E0Cell - 2.303RT/ nF log [Zn2+] / [Hg2+]
Ecell = ( E0cathode - E0anode) - 2.303RT/ nF log [Zn2+] / [Hg2+]
Ecell = ( E0Hg2+ /Hg - E0Zn /Zn2+) - 2.303RT/ nF log [Zn2+] / [Hg2+]
1.718 V = [ (0.85 V) - ( - 0.76 V)]- 2.303 8.314 J/K-mol 298 K / 2 96500 log [Zn2+] / [1.13 M]
1.718 V = (0.85 V + 0.76 V)- 0.029563 J/mol (log[Zn2+] -log[1.13] )
1.718 V =(1.61 V - 0.029563 V) (log[Zn2+] - 0.05308 )
1.718 V = 1.5804 V (log[Zn2+] - 0.05308 )
(log[Zn2+] - 0.05308 ) = 1.718 V / 1.5804 V
log[Zn2+] - 0.05308 = 1.08707
log[Zn2+] = 1.08707 + 0.05308
log[Zn2+] = 1.14015
[Zn2+] = 13.808611 M ( i.e the answer)