Question

In: Physics

An electron with an initial speed of 1.75x10^6 m/s is brought to rest by an electric...

An electron with an initial speed of 1.75x10^6 m/s is brought to rest by an electric field.
a) did the electron move into a region of higher potential or lower potential?
b) what was the potential difference that stopped the electron (in Volts)?

Please show all work!

Solutions

Expert Solution


Related Solutions

An electron with an initial speed of 5.05x10^5 m/s is brought to rest by an electric...
An electron with an initial speed of 5.05x10^5 m/s is brought to rest by an electric field. The charge of an electron is -1.60x10^-19C and its mass is 9.11x 10^-31 kg. a) did the electron move into a region of higher electric potential or lower electric potential? Explain b) What was the electric potential difference that stopped the electron?
A bullet of mass 0.010 kg and speed of 100 m/s is brought to rest in...
A bullet of mass 0.010 kg and speed of 100 m/s is brought to rest in a wooden block after penetrating a distance of 0.10 m. The work done on the bullet by the block is A. 50 J. B. - 50 J. C. 0.001 J. D. - 0.001 J. E. zero.
The speed of an electron is measured to be between 4.3x10^6 m/s and 4.5x10^6 m/s. What...
The speed of an electron is measured to be between 4.3x10^6 m/s and 4.5x10^6 m/s. What is the fractional uncertainty of its speed relative to the lower limit? What is the smallest possible uncertainity in its position? Explain everything in detail.
An electron at point A in the figure has a speed of 1.42×10^6 m/s.
An electron at point A in the figure has a speed of 1.42×10∧6 m/s. (a) Find the direction of the magnetic field that will cause the electron to follow the semicircular path from A to B. (b) Find the magnitude of the magnetic field that will cause the electron to follow the semicircular path from A to B. (c) Find the time required for the electron to move from A to B. (d) Find the direction of the magnetic field, that...
An electron with speed 2.75×107 m/s is traveling parallel to a uniform electric field of magnitude...
An electron with speed 2.75×107 m/s is traveling parallel to a uniform electric field of magnitude 1.20×104 N/C . How far will the electron travel before it stops? How much time will elapse before it returns to its starting point?
A car accelerates uniformly from rest and reaches a speed of 22.0 m/s in 9.00 s....
A car accelerates uniformly from rest and reaches a speed of 22.0 m/s in 9.00 s. If the diameter of the tire is 58.0 cm, find (a) the number of revolutions the tire makes during the motion, assuming that no slipping occurs. (b) What is the final angular speed of a tire in revolutions per second?                                           Answer:  (54.3 rev, 12.1 rev/s) --> please show me how to get this answer!
Anita is running to the right with a speed of 6 m/s
Anita is running to the right with a speed of \(6.0 \mathrm{~m} / \mathrm{s}\), as shown in the figure. Balls 1 and 2 are thrown toward her by her friends (standing still on the ground). As measured by Anita, both balls are approaching her at a speed of \(11 \mathrm{~m} / \mathrm{s}\).You may assume all the motions are completely horizontal.a) According to her friends, what is the magnitude and direction of the velocity of ball \(1\left(\vec{v}_{1}\right) ?\)b) According to her...
Gayle runs at a speed of 3.30 m/s and dives on a sled, initially at rest...
Gayle runs at a speed of 3.30 m/s and dives on a sled, initially at rest on the top of a frictionless snow-covered hill. After she has descended a vertical distance of 5.00 m, her brother, who is initially at rest, hops on her back and together they continue down the hill. What is their speed at the bottom of the hill if the total vertical drop is 15.0 m? Gayle's mass is 47.0 kg, the sled has a mass...
A cart changes its speed from rest to 100 m/s in 1 s. During this interval...
A cart changes its speed from rest to 100 m/s in 1 s. During this interval its acceleration is
An electron is initially is at rest in a uniform electric field E in the negative...
An electron is initially is at rest in a uniform electric field E in the negative y direction and a uniform magnetic field B in the negative z direction. Solve the equations of motion given by the Lorentz Force and show the trajectory of the electron is found as: x(t)= (cE / wB) * (wt - sintwt) y(T)=(cE / wB) * (1 - coswt) where w=(eB/mc)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT