Question

In: Physics

an electron is moving with a speed of 2.9E5 m/s when it moves in the positive...

an electron is moving with a speed of 2.9E5 m/s when it moves in the positive x direction, it feels no force. When it moves in the positive y direction it experiences a force of 3.3E-14N that points in the negative z direction. What is the magnitude and direction of the magnetic field?

Solutions

Expert Solution

F = q (v B) ; denotes the cross product.

CASE I There is no force in the x-direction.

So v B = 0

vBsin = 0

So the angle between v and B is 0 i.e = 0.

====> the direction of the magnetic field is either along +x or -x direction.

CASE II  Force when moving in y-direction.

F = q (v B)

3.3E-14 = 1.6E-19( 2.9E5 * B sin )

(Here = 90o as the direction of velocity is in y and that of B is along x)

Solving the above equation; we get B = 0.711 T

Also the direction of the force is along -ve z direction, so using the right hand thumb rule it can clearly be stated that the direction of the magnetic field is along +x axis.

So; B = 0.711 T along +ve x-axis.


Related Solutions

An electron moving at 16048180 m/s in the positive x-direction at right angles to a magnetic...
An electron moving at 16048180 m/s in the positive x-direction at right angles to a magnetic field, experiences a magnetic force of 0.0000000024 N in the positive y-direction. Find the magnitude of the magnetic field. What must be the direction of this magnetic field
An electron with a speed of 7.61 × 108 cm/s in the positive direction of an...
An electron with a speed of 7.61 × 108 cm/s in the positive direction of an x axis enters an electric field of magnitude 1.14 × 103 N/C, traveling along a field line in the direction that retards its motion. (a) How far will the electron travel in the field before stopping momentarily, and (b) how much time will have elapsed? (c) If the region containing the electric field is 7.36 mm long (too short for the electron to stop...
(8pts) A hot air balloon moves up at constant speed v = 20.0 m/s. When the...
(8pts) A hot air balloon moves up at constant speed v = 20.0 m/s. When the balloon is 20.0 meter above the ground, a cup of lemonade falls out of the balloon. And the balloon continues to move up at a constant speed v = 20.0 m/s. Ignore the air resistance.(a)Describe the motion of the lemonade cup as relative to the ground.(b)Describe the motion of the lemonade cup as relative to the balloon. (c)On the same diagram,plot thev-t graph of...
A billiard ball A moving at a speed of 2.4 m / s bumps into a...
A billiard ball A moving at a speed of 2.4 m / s bumps into a billiard ball B of the same mass, which are at rest. After the impact, A moves at a speed of 1.4 m / s in a direction that forms the angle 50 ◦ with A's original direction of movement. Determine the magnitude and direction of B's ​​velocity vector by the impact. (Answer 1.8 m / s; 36 ◦)
A rocket moves with a speed of 45 m / s. The rocket suddenly breaks into...
A rocket moves with a speed of 45 m / s. The rocket suddenly breaks into two parts of equal mass that fly at speeds v1 and v2. Obtain the magnitude of the velocity of each part in which the rocket broke.
Calculate the speed (in m/s) of an electron and a proton with a kinetic energy of...
Calculate the speed (in m/s) of an electron and a proton with a kinetic energy of 1.70 electron volt (eV). (The electron and proton masses are me = 9.11 ✕ 10−31 kg and mp = 1.67 ✕ 10−27 kg. Boltzmann's constant is kB = 1.38 ✕ 10−23 J/K.) (a) an electron m/s (b) a proton m/s (c) Calculate the average translational kinetic energy in eV of a 3.15 ✕ 102 K ideal gas particle. (Recall from Topic 10 that 1...
Mass m = 0.1 kg moves to the right with speed v = 0.54 m/s and...
Mass m = 0.1 kg moves to the right with speed v = 0.54 m/s and collides with an equal mass initially at rest. After this inelastic collision the system retains a fraction = 0.9 of its original kinetic energy. If the masses remain in contact for 0.01 secs while colliding, what is the average force in N between the masses during the collision? Hints: All motion is in 1D. Ignore friction between the masses and the horizontal surface. You...
Two automobiles, each of mass 500 kg, are moving at the same speed, 10 m/s, when...
Two automobiles, each of mass 500 kg, are moving at the same speed, 10 m/s, when they collide and stick together. In what direction and at what speed does the wreckage move (a) if one car was driving north and one south; (b) if one car was driving north and one east thank you!!!
1. A boy in a pedal car is moving at a speed of 1.40 m/s at...
1. A boy in a pedal car is moving at a speed of 1.40 m/s at the start of a 2.10 m high and 12.4 m long incline. The total mass is 54.5 kg, air resistance and rolling resistance can be modeled as a constant friction force of 41.0 N, and the speed at the lower end of the incline is 6.80 m/s. Determine the work done (in J) by the boy as the car travels down the incline. 2....
A softball of mass 0.220 kg that is moving with a speed of 8.0 m/s (in...
A softball of mass 0.220 kg that is moving with a speed of 8.0 m/s (in the positive direction) collides head-on and elastically with another ball initially at rest. Afterward the incoming softball bounces backward with a speed of 6.4 m/s. (a) Calculate the velocity of the target ball after the collision. (b) Calculate the mass of the target ball
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT