Question

In: Physics

Delivering a Package by Air Solution(Mastering Physics Chapter 03: Motion in Two Dimensions)

A relief airplane is delivering a food package to a group of people stranded on a very small island. The island is too small for the plane to land on, and the only way to deliver the package is by dropping it. The airplane flies horizontally with constant speed of 260 mph at an altitude of 700 m. The positive x and y directions are defined in the figure. For all parts, assume that the “island” refers to the point at a distance D from the point at which the package is released, as shown in the figure. Ignore the height of this point above sea level. Assume that the acceleration due to gravity is g = 9.80 m/s^2.

a. After a package is ejected from the plane, how long will it take for it to reach sea level from the time it is ejected? Assume that the package, like the plane, has an initial velocity of 260 mph in the horizontal direction.

b. If the package is to land right on the island, at what horizontal distance D from the plane to the island should the package be released?

c. What is the speed vf of the package when it hits the ground?

Solutions

Expert Solution

a.

Express your answer numerically in seconds. Neglect air resistance.

All that matters here is the height from which the package is dropped. The formula is:

x = vit + 1/2at2
700 = 0 * t + 1/2 * 9.8 * t2
700 = 4.9 * t2
t2 = 142.857
t = 11.95 s

The answer is 11.95 s.

b.

Express the distance numerically in meters.

First of all, convert mph into meters per second. Mastering Physics will constantly try and catch you with trick questions like this. Be very careful of units. One mph = 0.44704 m/s, so 260 mph = 116.23 m/s.

Now, since the package will be falling for 11.95 seconds and we know the velocity is 260 m/s, just use the formula x = vit + 1/2at2. There is no horizontal acceleration because we ignore air resistance:

x = vit + 1/2at2
x = 116.23 * 11.95 + 1/2 * 0 * 11.95^2
x = 116.23 * 11.95
x = 1,398 m

The answer is 1,389 m.

c.

Express your answer numerically in miles per hour.

We need both the x and y components of the velocity to solve this part. Since we’re ignoring air resistance, the x component will be 260 mph (116.23 m/s – see Part B). The y component can be found with the formula v = at. Since the time is 11.95 seconds and acceleration is 9.8 m/s^2, the y component of the velocity is 117.11 m/s. To find the velocity, just use the Pythagorean theorem:

vf = sqrt(vx^2 + vy^2)
vf = sqrt(116.23^2 + 117.11^2)
vf = 165 m/s

Now convert to mph. One mph is 0.44704 m/s, so:

Vf = m/s / 0.44704
Vf = 165 / 0.44704
Vf = 369 mph

The answer is  369 mph.

Related Solutions

Introduction to Projectile Motion Solution(Mastering Physics Chapter 03: Motion in Two Dimensions)
Consider a particle with initial velocity v that has magnitude 12.0m/s and is directed 60.0 degrees above the negative x axis. a. What is the x component vx of v? b. What is the y component vy of v? c. Look at this applet (I don’t have a copy of the applet, sorry). The motion diagram for a projectile is displayed, as are the motion diagrams for each component. The x component motion diagram is what you would get if you shined a...
A Canoe on a River Solution(Mastering Physics Chapter 03: Motion in Two Dimensions)
A canoe has a velocity of 0.550 m/s southeast relative to the earth. The canoe is on a river that is flowing at 0.490 m/s east relative to the earth. a. Find the magnitude of the velocity of the canoe relative to the river. b. Find the direction of the velocity of the canoe relative to the river.  
Speed of a Softball Solution(Mastering Physics Chapter 03: Motion in Two Dimensions)
A softball is hit over a third baseman’s head with speed v0 and at an angle θ from the horizontal. Immediately after the ball is hit, the third baseman turns around and runs straight back at a constant velocity V = 7.000 m/s, for a time t = 2.000 s. He then catches the ball at the same height at which it left the bat. The third baseman was initially L = 18.00 m from the location where the ball...
Crossing a River Solution(Mastering Physics Chapter 03: Motion in Two Dimensions)
A swimmer wants to cross a river, from point A to point B, as shown in the figure. The distance d1 (from A to C) is 200m, the distance d2 (from C to B) is 150m, and the speed vr of the current in the river is 5km/hour. Suppose that the swimmer’s velocity relative to the water makes an angle of θ = 45° with the line from A to C, as indicated in the figure. a. To swim directly from...
Crossing a River Solution(Mastering Physics Chapter 03: Motion in Two Dimensions)
The archerfish is a type of fish well known for its ability to catch resting insects by spitting a jet of water at them. This spitting ability is enabled by the presence of a groove in the roof of the mouth of the archerfish. The groove forms a long, narrow tube when the fish places its tongue against it and propels drops of water along the tube by compressing its gill covers. When an archerfish is hunting, its body shape...
Biking Vectors Solution(Mastering Physics Chapter 03: Motion in Two Dimensions)
A student bikes to school by traveling first dN = 1.10 miles north, then dW = 0.500 miles west, and finally dS = 0.200 miles south. Part A  If a bird were to start out from the origin (where the student starts) and fly directly (in a straight line) to the school, what distance db would the bird cover? Part B   Let the vector dN be the displacement vector corresponding to the 1st leg of the trip. Express dN in...
Arrow Hits Apple Solution(Mastering Physics Chapter 03: Motion in Two Dimensions)
An arrow is shot at an angle of θ = 45° above the horizontal. The arrow hits a tree a horizontal distance D = 220 m away, at the same height above the ground as it was shot. Use g = 9.8 m/s2 for the magnitude of the acceleration due to gravity. a. Find the time that the arrow spends in the air. b. Suppose someone drops an apple from a vertical distance of 6.0 meters, directly above the point where the...
Horizontal Cannon on a Cliff Solution(Mastering Physics Chapter 03: Motion in Two Dimensions)
A cannonball is fired horizontally from the top of a cliff. The cannon is at height H = 90.0 m above ground level, and the ball is fired with initial horizontal speed v0. Assume acceleration due to gravity to be g = 9.80 m/s2. Part A Assume that the cannon is fired at time t = 0 and that the cannonball hits the ground at time tg. What is the y position of the cannonball at the time tg/2? Part...
Springs in Two Dimensions Solution(Mastering Physics Chapter 05: Work and Energy)
The ends of two identical springs are connected. Their unstretched lengths l are negligibly small and each has spring constant k. After being connected, each spring is stretched an amount L and their free ends are anchored at y = 0 and x = ±L as shown (Figure 1) . The point where the springs are connected to each other is now moved from the origin to a position (x, y). Assume that (x, y) lies in the first quadrant....
Two Blocks and a Pulley Solution(Mastering Physics Chapter 04: Force and Motion)
Block 1, of mass m1 = 0.650 kg , is connected over an ideal (massless and frictionless) pulley to block 2, of mass m2, as shown. For an angle of θ = 30.0° and a coefficient of kinetic friction between block 2 and the plane of μ = 0.200, an acceleration of magnitude a = 0.450m/s2 is observed for block 2. Part A Find the mass of block 2, m2.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT