Question

In: Mechanical Engineering

A steam power plant has two turbines in series which together develop a power output of...

A steam power plant has two turbines in series which together develop a power output of 25MW. The boiler supplies steam at 80 bar, 500°C to the high-pressure turbine in which there is an enthalpy drop of 420 kJ/kg. The exhaust from the high pressure is at a pressure of 15 bar, at which pressure some of the steam is delivered to an open-type feedwater heater while the remainder is reheated to 450°C. The steam from the reheater is expanded in the low-pressure turbine to a condenser pressure of 0.05 bar and 0.92 dryness fraction. The condensate leaves the condenser at 25°C and is pumped into the feedwater heater at 15bar where it mixes with the bled steam from the high-pressure turbine exhaust. The feedwater leaves the heater at 188°C and is pumped into the boiler. You may neglect the feed pump work.

Calculate the mass flow rates through the high and low-pressure turbines

Solutions

Expert Solution


Related Solutions

Prob.1) Consider a combined gas and steam power plant that has a net power output of...
Prob.1) Consider a combined gas and steam power plant that has a net power output of 450 MW. The pressure ratio of the gas turbine cycle is 14. Air enters the compressor at 300 K and the turbine at 1 400 K. The combustion gases leaving the gas turbine are used to heat the steam to 8 MPa. up to 400 ° C in a heat exchanger. The combustion gases exit the heat exchanger at 460 K. An open feedwater...
At a steam power plant, steam engines work in pairs, the heat output of the first...
At a steam power plant, steam engines work in pairs, the heat output of the first one being the approximate heat input of the second. The operating temperatures of the first are 770 ∘C and 460 ∘C, and of the second 435 ∘C and 280 ∘C. A) If the heat of combustion of coal is 2.8×107J/kg, at what rate must coal be burned if the plant is to put out 860 MW of power? Assume the efficiency of the engines...
Consider a steam power plant operating on a simple ideal Rankine cycle in which the steam...
Consider a steam power plant operating on a simple ideal Rankine cycle in which the steam enters the turbine at 3 MPa and 350C and is condensed in the condenser at 75 kPa. Determine the thermal efficiency of this cycle and sketch an appropriately labeled T-s diagram. Also compare this thermal efficiency to that a Carnot heat engine operating between these same two limits. The change in enthalpy across the pump = work done by the pump: h2-h1= v1(P2– P1)
6. A 600-MW steam power plant, which is cooled by a nearby river, has a thermal...
6. A 600-MW steam power plant, which is cooled by a nearby river, has a thermal efficiency of 35 percent. Determine the rate of heat transfer to the river water.
A 400-MW steam power plant, which is cooled by a nearby river, has a thermal efficiency...
A 400-MW steam power plant, which is cooled by a nearby river, has a thermal efficiency of 33 percent. (i) Sketch an appropriate illustration for this heat engine clearly showing the heat source and sink. (ii) Determine the rate of heat transfer to the river water. (iii) Will the actual heat transfer rate be higher or lower than this value? Why?
Turbines in electric power stations are driven by high pressure steam produced by boiling water in...
Turbines in electric power stations are driven by high pressure steam produced by boiling water in a boiler. The pressure in the boiler could be as high as 300 atm. This high pressure steam could explode in a disastrous way if there was a fault in the boiler. Before use, boilers are tested by filling them with water, and pressurising the water to, for example, 300 atm. Let's guess that this reduces the volume of the water to 98.5% of...
Steam turbine power plant practical report
Steam turbine power plant practical report
A nuclear power plant has an overall efficiency of 31% and a power output of 800MW....
A nuclear power plant has an overall efficiency of 31% and a power output of 800MW. For one year operating at full capacity, calculate a) the number of joules produced; b) the number of fission events that were required to produce those joules; c) the mass of uranium oxide (UO2) that has been used in fission; and d) the market cost of that uranium oxide if it was all high quality.
Consider a steam power plant that operates on a reheat Rankine cycle and has a net...
Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500°C and the low-pressure turbine at 1 MPa and 500°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 78 percent and that of the pump is 95 percent. a.)Determine the quality (or temperature, if superheated) of the...
Consider a steam power plant that operates on a reheat Rankine cycle and has a net...
Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500°C and the low-pressure turbine at 1 MPa and 500°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 80 percent, and that of the pump is 95 percent. Show the cycle on a T-s diagram with respect...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT