Question

In: Mechanical Engineering

Steam turbine power plant practical report

Steam turbine power plant practical report

Solutions

Expert Solution


Related Solutions

A steam power plant operates on a practical Rankine Cycle. The steam enters the turbine at...
A steam power plant operates on a practical Rankine Cycle. The steam enters the turbine at 3 MPa and “648” K and is condensed in the condenser at a pressure of 46 kPa. You are assigned on a project to improve the thermal efficiency of this plant. a) Draw the schematic of the plant and determine the thermal efficiency of the practical cycle assuming that the efficiencies of pump and turbine are 0.75 and 0.7, respectively. ( b) Draw a...
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine...
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine at 4 MPa and 500 C and leaves it at 50 kPa and 150 C. the water leaves the condenser as a saturated liquid and is subsequently displaced to the boiler by means of a pump at a temperature of 85 C, which is the isentrophic efficiency of the turbine?
A steam power plant operates on a regenerative Rankine cycle. Steam enters the turbine at 6...
A steam power plant operates on a regenerative Rankine cycle. Steam enters the turbine at 6 MPa at 700 ºC and the condenser at 10 kPa. Turbine has isentropic efficiency of 85% and pumps have isentropic efficiency of 90%. Steam is extracted from the turbine at 0.6 MPa to heat the feedwater in an open feedwater heater. Water leaves the open feedwater heater as saturated liquid. a) Draw the system with labels and show the ideal and the non-ideal cycle...
Steam enters the high-pressure turbine of a steam power plant that operates on the ideal reheat...
Steam enters the high-pressure turbine of a steam power plant that operates on the ideal reheat Rankine cycle at 6 MPa and 500°C and leaves as saturated vapor. Steam is then reheated to 400°C before it expands to a pressure of 10 kPa. Heat is transferred to the steam in the boiler at a rate of 6*104 kW. Steam is cooled in the condenser by the cooling water from a nearby river, which enters the condenser at 7°C. Show the...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 15 MPa and 600°C. The steam condenses in the condenser at 10 kPa. Use the EES software to study the effects of the following cases on the cycle performance and to sketch the T-s diagram for each case: Plot the variation of the cycle thermal efficiency with the turbine isentropic efficiency. Take the isentropic efficiency of the turbine in the range 70% to...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 15 MPa and 600°C. The steam condenses in the condenser at 10 kPa. Use the EES software to study the effects of the following cases on the cycle performance and to sketch the T-s diagram for each case: #Plot the variation of the cycle thermal efficiency with the turbine isentropic efficiency. Take the isentropic efficiency of the turbine in the range 70% to...
A coal-fired power plant uses 400 ◦C steam to turn a turbine. Afterwards, the steam is...
A coal-fired power plant uses 400 ◦C steam to turn a turbine. Afterwards, the steam is condensed at a temperature of 25 ◦C. If the plant burns 1 million kg of coal in one hour, running at maximum efficiency, what is the amount of work that could be done by the turbine in that hour? (Coal contains 27 kJ of energy per g).
In a power plant based on a simple Rankine cycle, steam enters the turbine at 15...
In a power plant based on a simple Rankine cycle, steam enters the turbine at 15 MPa and 900°C. The condenser pressure is 5 kPa. The turbine operates adiabatically and has an isentropic efficiency of 85%, and the pump also operates adiabatically and has an isentropic efficiency of 80%. Determine the work required to pump the water to the boiler in kJ/kg of water flowing, and the enthalpy of the water leaving the pump.
A steam turbine operates adiabatically at a power level of 3500 kW. Steam enters the turbine...
A steam turbine operates adiabatically at a power level of 3500 kW. Steam enters the turbine at 2400 kPa and 500oC and exhausts from the turbine at 20 kPa as saturated vapor. What is the flow rate of steam run through the turbine, and what is the turbine efficiency? Draw the process on the P-H diagram.
Superheated steam at 20 MPa, 640°C enters the turbine of a vapor power plant. The pressure...
Superheated steam at 20 MPa, 640°C enters the turbine of a vapor power plant. The pressure at the exit of the turbine is 0.5 bar, and liquid leaves the condenser at 0.4 bar at 75°C. The pressure is increased to 20.1 MPa across the pump. The turbine and pump have isentropic efficiencies of 81 and 85%, respectively. Cooling water enters the condenser at 20°C with a mass flow rate of 70.7 kg/s and exits the condenser at 38°C. For the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT