Question

In: Statistics and Probability

An experiment is performed to study the fatigue performance of a high strength alloy. The number...

An experiment is performed to study the fatigue performance of a high strength alloy. The number of cycles to crack initiation is measured for twenty specimens over a range of applied pseudo-stress amplitude (PSA) levels. Use the data in the table provided to fit the following three regression models with y = Cycles and x = PSA (note the natural log transform of y for all models):

PSA (x) Cycles (y)

80, 97379

80, 340084

80, 246163

80, 239348

100, 34346

100, 23834

100, 70423

100, 51851

120, 9139

120, 9487

120, 8094

120, 17956

140, 5640

140, 3338

140, 6170

140, 5608

160, 1723

160, 3525

160, 2655

160, 1732

iii. A simple linear regression model with a logarithm transformation on PSA: lny=δ0+δ1ln⁡(x) .

1) Using model (iii.), find a 95% confidence interval for the mean Cycles to crack initiation at a PSA of 130

Solutions

Expert Solution

iii) The simple linear regression can be performed on excel:

Following are the steps

Step 1: Put the data into the excel spreadsheet

Step 2: Convert the normal values to log values by using (=ln) command

Step 3: Go to data --> data analysis --> regression --> select the data

Step 4: Select the data --> click ok

Based on the regression results, the equation will be:

ln (y) = 40.678 - 6.513*ln(x)

95% confidence interval for the mean cycles to crack initiation at a PSA of 130

The mean cycle value PSA of 130 is:

ln (y) = 40.678 - 6.513*ln(130)

ln (y) = 8.9575

Following is the formula for calculating the confidence interval:

Confidence interval = ln (y) +/- z*S.E.

where,

z = z score at given confidence interval

S.E. = Standard Error

The value of z at a 95% confidence interval is 1.96

The value of standard error is mentioned in the output as 0.3984

Confidence Interval = 8.9575 +/- 1.96*0.3984

Confidence Interval = 8.9575 +/- 0.7808

Confidence Interval = (8.1767,9.7383)


Related Solutions

An experiment is performed to study the fatigue performance of a high strength alloy. The number...
An experiment is performed to study the fatigue performance of a high strength alloy. The number of cycles to crack initiation is measured for twenty specimens over a range of applied pseudo-stress amplitude (PSA) levels. Use the data in the table provided to fit the following three regression models with y = Cycles and x = PSA (note the natural log transform of y for all models): PSA (x) Cycles (y) 80, 97379 80, 340084 80, 246163 80, 239348 100,...
An experiment is performed to study the fatigue performance of a high strength alloy. The number...
An experiment is performed to study the fatigue performance of a high strength alloy. The number of cycles to crack initiation is measured for twenty specimens over a range of applied pseudo-stress amplitude (PSA) levels. Use the data in the table provided to fit the following three regression models with y = Cycles and x = PSA (note the natural log transform of y for all models): PSA (x) Cycles (y) 80, 97379 80, 340084 80, 246163 80, 239348 100,...
An experiment is performed to study the fatigue performance of a high strength alloy. The number...
An experiment is performed to study the fatigue performance of a high strength alloy. The number of cycles to crack initiation is measured for twenty specimens over a range of applied pseudo-stress amplitude (PSA) levels. Use the data in the table provided to fit the following three regression models with y = Cycles and x = PSA (note the natural log transform of y for all models): PSA Cycles 80        97379 80        340084 80        246163 80        239348 100      34346 100     ...
. An experiment was performed on a certain metal to determine if the strength is a...
. An experiment was performed on a certain metal to determine if the strength is a function of heating time (hours). Results based on 20 metal sheets are given below. Use the simple linear regression model. ∑X = 40 ∑X2 = 200 ∑Y =   80 ∑Y2 = 1120 ∑XY = 460 Find the estimated y intercept and slope and write the equation of the least squares regression line. Estimate Y when X is equal to 3 hours. Also determine the...
. An experiment was performed on a certain metal to determine if the strength is a...
. An experiment was performed on a certain metal to determine if the strength is a function of heating time (hours). Results based on 25 metal sheets are given below. Use the simple linear regression model. ∑X = 50 ∑X2 = 200 ∑Y = 75 ∑Y2 = 1600 ∑XY = 400 Find the estimated y intercept and slope. Write the equation of the least squares regression line and explain the coefficients. Estimate Y when X is equal to 4 hours....
An experiment was performed on a certain metal to determine if the strength is a function...
An experiment was performed on a certain metal to determine if the strength is a function of heating time (hours). Results based on 25 metal sheets are given below. Use the simple linear regression model. ∑X = 50 ∑X2 = 200 ∑Y = 75 ∑Y2 = 1600 ∑XY = 400 Find the estimated y intercept and slope. Write the equation of the least squares regression line and explain the coefficients. Estimate Y when X is equal to 4 hours. Also...
9. An experiment was performed on a certain metal to determine if the strength is a...
9. An experiment was performed on a certain metal to determine if the strength is a function of heating time (hours). Results based on 20 metal sheets are given below. Use the simple linear regression model. ∑X = 40 ∑X2 = 200 ∑Y = 80 ∑Y2 = 1120 ∑XY = 388 Find the estimated y intercept and slope. Write the equation of the least squares regression line and explain the coefficients. Estimate Y when X is equal to 5 hours....
An experiment was performed on a certain metal to determine if the strength is a function...
An experiment was performed on a certain metal to determine if the strength is a function of heating time (hours). Results based on 25 metal sheets are given below. Use the simple linear regression model. ∑X = 50 ∑X2 = 200 ∑Y = 75 ∑Y2 = 1600 ∑XY = 400 Find the estimated y intercept and slope. Write the equation of the least squares regression line and explain the coefficients. Estimate Y when X is equal to 4 hours. Also...
An experiment was performed to determine the effect of four different chemicals on the strength of...
An experiment was performed to determine the effect of four different chemicals on the strength of a fabric. These chemicals are used as part of the permanent press finishing process. Five fabric samples were selected, and a randomized complete block design was run by testing each chemical type once in random order on each fabric sample. The data are shown in Table below. test for differences in means using an ANOVA with α=0.01 Fabric Sample Chemical Type 1 2 3...
For a brass alloy, the tensile strength is 400 MPa, the yield strength is 315 MPa...
For a brass alloy, the tensile strength is 400 MPa, the yield strength is 315 MPa and the modulus of elasticity is 100 GPa. (a) What is the maximum load that may applied to the specimen with a cross sectional area of 130 mm2 before it fractures? (b) For the same cross sectional area, if the original length of the specimen is 75 mm what will be the length of the specimen, when a load of 13000 N is applied...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT