Question

In: Statistics and Probability

. An experiment was performed on a certain metal to determine if the strength is a...

. An experiment was performed on a certain metal to determine if the strength is a function of heating time (hours). Results based on 20 metal sheets are given below. Use the simple linear regression model.
∑X = 40
∑X2 = 200
∑Y =   80
∑Y2 = 1120
∑XY = 460

Find the estimated y intercept and slope and write the equation of the least squares regression line. Estimate Y when X is equal to 3 hours. Also determine the standard error, the Mean Square Error, the coefficient of determination and the coefficient of correlation.

Solutions

Expert Solution

Σn ΣX ΣY ΣXY ΣX² ΣY²
20 40 80 460 200 1120

sample size ,   n =   20      
here, x̅ =   2.0000 , ȳ =   4.0000

SSxx =    Σx² - (Σx)²/n =   120


SSxy=   Σxy - (Σx*Σy)/n =   300


SSyy =    Σy²-(Σy)²/n =   800


slope ,    ß1 = SSxy/SSxx =   2.5

intercept,   ß0 = y̅-ß1* x̄ =   -1

so, regression line is   Ŷ =   -1 +   2.5 *x

------------------

when X=3

then Ŷ =   -1 +   2.5 *3 = 6.5

--------------------------

SSE=   (Sx*Sy - S²xy)/Sx =    50
      
std error ,Se =    √(SSE/(n-2)) =    1.667

------------------------

Mean Square Error = SSE/(N-2)=50/18=2.778
----------------------

SSR = SST-SSE = SSyy - SSE = 800-50=750

R² = SSR/SST=750/800 = 0.9375
------------------------------

the coefficient of correlation=√R² = √0.9375 = 0.9682


Related Solutions

. An experiment was performed on a certain metal to determine if the strength is a...
. An experiment was performed on a certain metal to determine if the strength is a function of heating time (hours). Results based on 25 metal sheets are given below. Use the simple linear regression model. ∑X = 50 ∑X2 = 200 ∑Y = 75 ∑Y2 = 1600 ∑XY = 400 Find the estimated y intercept and slope. Write the equation of the least squares regression line and explain the coefficients. Estimate Y when X is equal to 4 hours....
An experiment was performed on a certain metal to determine if the strength is a function...
An experiment was performed on a certain metal to determine if the strength is a function of heating time (hours). Results based on 25 metal sheets are given below. Use the simple linear regression model. ∑X = 50 ∑X2 = 200 ∑Y = 75 ∑Y2 = 1600 ∑XY = 400 Find the estimated y intercept and slope. Write the equation of the least squares regression line and explain the coefficients. Estimate Y when X is equal to 4 hours. Also...
9. An experiment was performed on a certain metal to determine if the strength is a...
9. An experiment was performed on a certain metal to determine if the strength is a function of heating time (hours). Results based on 20 metal sheets are given below. Use the simple linear regression model. ∑X = 40 ∑X2 = 200 ∑Y = 80 ∑Y2 = 1120 ∑XY = 388 Find the estimated y intercept and slope. Write the equation of the least squares regression line and explain the coefficients. Estimate Y when X is equal to 5 hours....
An experiment was performed on a certain metal to determine if the strength is a function...
An experiment was performed on a certain metal to determine if the strength is a function of heating time (hours). Results based on 25 metal sheets are given below. Use the simple linear regression model. ∑X = 50 ∑X2 = 200 ∑Y = 75 ∑Y2 = 1600 ∑XY = 400 Find the estimated y intercept and slope. Write the equation of the least squares regression line and explain the coefficients. Estimate Y when X is equal to 4 hours. Also...
An experiment was performed to determine the effect of four different chemicals on the strength of...
An experiment was performed to determine the effect of four different chemicals on the strength of a fabric. These chemicals are used as part of the permanent press finishing process. Five fabric samples were selected, and a randomized complete block design was run by testing each chemical type once in random order on each fabric sample. The data are shown in Table below. test for differences in means using an ANOVA with α=0.01 Fabric Sample Chemical Type 1 2 3...
An experiment is performed to study the fatigue performance of a high strength alloy. The number...
An experiment is performed to study the fatigue performance of a high strength alloy. The number of cycles to crack initiation is measured for twenty specimens over a range of applied pseudo-stress amplitude (PSA) levels. Use the data in the table provided to fit the following three regression models with y = Cycles and x = PSA (note the natural log transform of y for all models): PSA (x) Cycles (y) 80, 97379 80, 340084 80, 246163 80, 239348 100,...
An experiment is performed to study the fatigue performance of a high strength alloy. The number...
An experiment is performed to study the fatigue performance of a high strength alloy. The number of cycles to crack initiation is measured for twenty specimens over a range of applied pseudo-stress amplitude (PSA) levels. Use the data in the table provided to fit the following three regression models with y = Cycles and x = PSA (note the natural log transform of y for all models): PSA (x) Cycles (y) 80, 97379 80, 340084 80, 246163 80, 239348 100,...
An experiment is performed to study the fatigue performance of a high strength alloy. The number...
An experiment is performed to study the fatigue performance of a high strength alloy. The number of cycles to crack initiation is measured for twenty specimens over a range of applied pseudo-stress amplitude (PSA) levels. Use the data in the table provided to fit the following three regression models with y = Cycles and x = PSA (note the natural log transform of y for all models): PSA (x) Cycles (y) 80, 97379 80, 340084 80, 246163 80, 239348 100,...
An experiment is performed to study the fatigue performance of a high strength alloy. The number...
An experiment is performed to study the fatigue performance of a high strength alloy. The number of cycles to crack initiation is measured for twenty specimens over a range of applied pseudo-stress amplitude (PSA) levels. Use the data in the table provided to fit the following three regression models with y = Cycles and x = PSA (note the natural log transform of y for all models): PSA Cycles 80        97379 80        340084 80        246163 80        239348 100      34346 100     ...
In an experiment involving the breaking strength of a certain type of thread used in personal...
In an experiment involving the breaking strength of a certain type of thread used in personal flotation devices, one batch of thread was subjected to a heat treatment for 60 seconds and another batch was treated for 120 seconds. The breaking strengths (in N) of ten threads in each batch were measured. The results were 60 seconds: 43 52 52 58 49 52 41 52 56 58 120 seconds: 59 55 59 66 62 55 57 66 66 51 Let...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT