Question

In: Advanced Math

Consider the given matrix. 3    0    0 0    2    0 16   ...

Consider the given matrix.

3    0    0
0    2    0
16    0    1

Find the eigenvalues. (Enter your answers as a comma-separated list.)

λ = 1,2,3

Find the eigenvectors. (Enter your answers in order of the corresponding eigenvalues, from smallest eigenvalue to largest.)

Solutions

Expert Solution


Related Solutions

Consider the matrix A given by [ 2 0 0 ] [ 0 2 3 ]...
Consider the matrix A given by [ 2 0 0 ] [ 0 2 3 ] [ 0 3 10 ] (20) Find all its eigenvalues and corresponding eigenvectors. Show your work. (+5) Write down the entire eigendecomposition (i.e. the matrices X, Lambda, and X inverse) explicitly.
Given a matrix A = [?1 ? ? 0 ?2 ? 0 0 ?2], with ?1...
Given a matrix A = [?1 ? ? 0 ?2 ? 0 0 ?2], with ?1 ≠ ?2 and ?1, ?2 ≠ 0, A) Find necessary and sufficient conditions on a, b, and c such that A is diagonalizable. B) Find a matrix, C, such that C-1 A C = D, where D is diagonal. C) Demonstrate this with ?1 = 2, ?2 = 5, and a, b, and c chosen by you, satisfying your criteria from A).
Consider the matrix A = [2, -1, 1, 2; 0, 2, 1, 1; 0, 0, 2,...
Consider the matrix A = [2, -1, 1, 2; 0, 2, 1, 1; 0, 0, 2, 2; 0, 0, 0, 1]. Find P, so that P^(-1) A P is in Jordan normal form.
eigenvalues of the matrix A = [1 3 0, 3 ?2 ?1, 0 ?1 1] are...
eigenvalues of the matrix A = [1 3 0, 3 ?2 ?1, 0 ?1 1] are 1, ?4 and 3. express the equation of the surface x^2 ? 2y^2 + z^2 + 6xy ? 2yz = 16. How should i determine the order of the coefficient in the form X^2/A+Y^2/B+Z^2/C=1?
Find a matrix P that diagonalizes the matrix A = [ 2 0 ?2 / 0...
Find a matrix P that diagonalizes the matrix A = [ 2 0 ?2 / 0 3 0 / 0 0 3 ] and compute P ?1AP.
find all eigenvalues and eigenvectors of the given matrix A= [1 0 0 2 1 -2...
find all eigenvalues and eigenvectors of the given matrix A= [1 0 0 2 1 -2 3 2 1]
Compute the determinant of A, where A= a 4x4 matrix [1 -3 0 0; 2 1...
Compute the determinant of A, where A= a 4x4 matrix [1 -3 0 0; 2 1 0 0; 0 0 1 2; 0 0 2 1] a 4x4 matrix [2 5 4 2; 0 0 0 2; 0 -3 0 -4; 1 0 -1 1] and a 4x4 matrix [1 -3 0 0; 2 1 0 0; 0 0 1 2; 0 0 2 1]^-1. a) det(A)= -36 b) det(A)= 5 c) det(A)= 0 d) det(A)= -13 e)det(A)= 36
for the matrix, A= [1 2 -1; 2 3 1; -1 -1 -2; 3 5 0]...
for the matrix, A= [1 2 -1; 2 3 1; -1 -1 -2; 3 5 0] a. calculate the transpose of A multiplied by A b. find the eigenvectors and eigenvalues of the answer to a c. Find the SVD of matrix A
first matrix A [ 2 -1 3 ] [-4 0 -2 ] [2 -5 12 ]...
first matrix A [ 2 -1 3 ] [-4 0 -2 ] [2 -5 12 ] [4 0 4 ] amd b [2] [-2] [5] [0] solve for Ax=b using tan LU factorization of A
Find the inverse of the matrix A= 2 -1 3 0 1 1 -1 -1 0
Find the inverse of the matrix A= 2 -1 3 0 1 1 -1 -1 0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT