Question

In: Advanced Math

for the matrix, A= [1 2 -1; 2 3 1; -1 -1 -2; 3 5 0]...

for the matrix, A= [1 2 -1; 2 3 1; -1 -1 -2; 3 5 0]

a. calculate the transpose of A multiplied by A

b. find the eigenvectors and eigenvalues of the answer to a

c. Find the SVD of matrix A

Solutions

Expert Solution

MATLAB Code:

close all
clear
clc

A = [1 2 -1; 2 3 1; -1 -1 -2; 3 5 0];

fprintf('Part (a)\n--------------------------------\n')
B = A' * A;
disp('Transpose(A) * A ='), disp(B)

fprintf('\nPart (b)\n--------------------------------\n')
[V, D] = eig(B);
disp('Eigen Values of Transpose(A) * A ='), disp(diag(D))
disp('Eigen Vectors of Transpose(A) * A ='), disp(V)

fprintf('\nPart (c)\n--------------------------------\n')
[U, S, V] = svd(A);
fprintf('SVD of A:\n----------------\n')
disp('U ='), disp(U)
disp('S ='), disp(S)
disp('V ='), disp(V)

Output:


Related Solutions

first matrix A [ 2 -1 3 ] [-4 0 -2 ] [2 -5 12 ]...
first matrix A [ 2 -1 3 ] [-4 0 -2 ] [2 -5 12 ] [4 0 4 ] amd b [2] [-2] [5] [0] solve for Ax=b using tan LU factorization of A
eigenvalues of the matrix A = [1 3 0, 3 ?2 ?1, 0 ?1 1] are...
eigenvalues of the matrix A = [1 3 0, 3 ?2 ?1, 0 ?1 1] are 1, ?4 and 3. express the equation of the surface x^2 ? 2y^2 + z^2 + 6xy ? 2yz = 16. How should i determine the order of the coefficient in the form X^2/A+Y^2/B+Z^2/C=1?
Consider the matrix A given by [ 2 0 0 ] [ 0 2 3 ]...
Consider the matrix A given by [ 2 0 0 ] [ 0 2 3 ] [ 0 3 10 ] (20) Find all its eigenvalues and corresponding eigenvectors. Show your work. (+5) Write down the entire eigendecomposition (i.e. the matrices X, Lambda, and X inverse) explicitly.
Find the inverse of the matrix A= 2 -1 3 0 1 1 -1 -1 0
Find the inverse of the matrix A= 2 -1 3 0 1 1 -1 -1 0
Compute the determinant of A, where A= a 4x4 matrix [1 -3 0 0; 2 1...
Compute the determinant of A, where A= a 4x4 matrix [1 -3 0 0; 2 1 0 0; 0 0 1 2; 0 0 2 1] a 4x4 matrix [2 5 4 2; 0 0 0 2; 0 -3 0 -4; 1 0 -1 1] and a 4x4 matrix [1 -3 0 0; 2 1 0 0; 0 0 1 2; 0 0 2 1]^-1. a) det(A)= -36 b) det(A)= 5 c) det(A)= 0 d) det(A)= -13 e)det(A)= 36
Given a matrix A = [?1 ? ? 0 ?2 ? 0 0 ?2], with ?1...
Given a matrix A = [?1 ? ? 0 ?2 ? 0 0 ?2], with ?1 ≠ ?2 and ?1, ?2 ≠ 0, A) Find necessary and sufficient conditions on a, b, and c such that A is diagonalizable. B) Find a matrix, C, such that C-1 A C = D, where D is diagonal. C) Demonstrate this with ?1 = 2, ?2 = 5, and a, b, and c chosen by you, satisfying your criteria from A).
exampleInput.txt 1 2 3 0 2 3 4 0 1 3 5 0 1 2 6...
exampleInput.txt 1 2 3 0 2 3 4 0 1 3 5 0 1 2 6 1 5 6 8 2 4 6 7 3 4 5 9 10 5 8 9 4 7 9 6 7 8 6 How can I detect when 'cin' starts reading from a new line. The amount of numbers in each row is unknown. I need them in type 'int' to use the data.
A:=<<0,-1,1>|<4,0,-2>|<2,-1,0>|<2,1,1>>; Matrix(3, 4, [[0, 4, 2, 2], [-1, 0, -1, 1], [1, -2, 0, 1]]) (a)...
A:=<<0,-1,1>|<4,0,-2>|<2,-1,0>|<2,1,1>>; Matrix(3, 4, [[0, 4, 2, 2], [-1, 0, -1, 1], [1, -2, 0, 1]]) (a) Use the concept of matrix Rank to argue, without performing ANY calculation, why the columns of this matrix canNOT be linerly independent. (b) Use Gauss-Jordan elimination method (you can use ReducedRowEchelonForm command) to identify a set B of linearly independent column vectors of A that span the column space of A. Express the column vectors of A that are not included in the set...
Let 3x3 matrix A = -3 0 -4                               0 5 0        &nb
Let 3x3 matrix A = -3 0 -4                               0 5 0                              -4 0 3 a) Find the eigenvalues of A and list their multiplicities. b) Find a basis, Bi, for each eigenspace, E(i). c) If possible, diagonalise matrix A. (i.e find matrices P and D such that Pinv AP = D is diagonal).
Consider the matrix A = [2, -1, 1, 2; 0, 2, 1, 1; 0, 0, 2,...
Consider the matrix A = [2, -1, 1, 2; 0, 2, 1, 1; 0, 0, 2, 2; 0, 0, 0, 1]. Find P, so that P^(-1) A P is in Jordan normal form.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT