In: Finance
Problem 14-1 (Algorithmic) Suppose that the R&B Beverage Company has a soft drink product that shows a constant annual demand rate of 3000 cases. A case of the soft drink costs R&B $3. Ordering costs are $19 per order and holding costs are 27% of the value of the inventory. R&B has 250 working days per year, and the lead time is 5 days. Identify the following aspects of the inventory policy: a.Economic order quantity. If required, round your answer to two decimal places. b.Reorder point. c.Cycle time. If required, round your answer to two decimal places. d. total annual cost. If required, round your answer to two decimal places.
Economic Order Quantity | =(2*Annual Demand*Cost of placing 1 order/Cost of handing per unit per year)^(1/2) | |||
Annual Demand | 3000 | |||
Cost of placing 1 order | $ 19.00 | |||
Storage cost | $ 0.81 | (3*27%) | ||
Solution to 1 | ||||
Putting all these factors in EOQ formula | =(2*3000*19/0.81)^(1/2) | |||
Economic Order quantity | 375.15 | |||
Solution to 2 | ||||
No of days in year | 250 | |||
Lead days | 5 | |||
Safety stock | 0 | |||
Average daily use= | Annual demand/No of days | |||
Average daily use= | =3000/250 | |||
Average daily use= | 12 | |||
Reorder point= | (Average daily usage rate * Lead time) + Safety stock | |||
Reorder point= | =(12*5) + 0 | |||
Reorder point= | 60 | |||
Solution to 3 | ||||
Cycle time | EOQ * No of days/Annual demand | |||
Cycle time | 375.15*250/3000 | |||
Cycle time | 31.26 | |||
Total No of orders | =3000/375.15 | 8 | ||
So total 8 orders will be placed | ||||
Average Inventory | =375.15/2 | 188 | ||
Annual ordering cost | Total no of orders * order cost per unit | |||
=8*19 | $ 151.94 | |||
Annual Annual holding cost | EOQ*Annual holding cost/2 | |||
=375.15*0.81/2 | $ 151.94 | |||
Total Cost | =151.94+151.94 | $ 303.87 | ||