Question

In: Physics

A diffraction grating has 25,000 lines/cm and is illuminated with light having a frequency of 5.0...

A diffraction grating has 25,000 lines/cm and is illuminated with light having a frequency of 5.0 x 10​14​ Hz. What are the angles of (a) the first-order bright fringe and (b) the second-order bright fringe?

Solutions

Expert Solution

v = speed of light = 3 x 108 m/s

f = frequency = 5.0 x 1014 Hz

= wavelength = ?

wavelength is given as

= v/f

= (3 x 108)/(5.0 x 1014)

= 6 x 10-7 m

d = width of the slit = 0.01/25000 = 4 x 10-7 m

a)

= ?

n = 1

for bright fringe

d Sin = n

Sin = n /d

Sin = (1) (6 x 10-7)/(4 x 10-7)

Sin = 1.5

Since value of Sin can not be greater than 1, hence angle for first-order bright fringe is not possible

b)

= ?

n = 2

for bright fringe

d Sin = n

Sin = n /d

Sin = (2) (6 x 10-7)/(4 x 10-7)

Sin = 3

Since value of Sin can not be greater than 3, hence angle for first-order bright fringe is not possible


Related Solutions

A 500 lines per mm diffraction grating is illuminated by light of wavelength 620 nm ....
A 500 lines per mm diffraction grating is illuminated by light of wavelength 620 nm . Part B What is the angle of each diffraction order? Enter your answers using two significant figures in ascending order separated by commas.
A 1.2-cm-wide diffraction grating has 1000 slits. It is illuminated by light of wavelength 510 nm....
A 1.2-cm-wide diffraction grating has 1000 slits. It is illuminated by light of wavelength 510 nm. What are the angles of the first two diffraction orders? Answer = ∘,∘
A 1.2-cm-wide diffraction grating has 1000 slits. It is illuminated by light of wavelength 510 nm....
A 1.2-cm-wide diffraction grating has 1000 slits. It is illuminated by light of wavelength 510 nm. What are the angles of the first two diffraction orders? Answer = ∘,∘
A 500 lines per mm diffraction grating is illuminated by light of wavelength 640 nm. 1....
A 500 lines per mm diffraction grating is illuminated by light of wavelength 640 nm. 1. What is the maximum diffraction order seen? Express your answer as an integer. 2. What is the angle of each diffraction order starting from zero diffraction order to the maximum visible diffraction order? Enter your answers in degrees in ascending order separated by commas.
700nm light strikes a 12,000 lines / cm diffraction grating a) determine the angular separation of...
700nm light strikes a 12,000 lines / cm diffraction grating a) determine the angular separation of the second maximum from the center. Explain what happens to the second one in this case.
A diffraction grating is illuminated first with red light of wavelength 600 nm and then with...
A diffraction grating is illuminated first with red light of wavelength 600 nm and then with light of an unknown wavelength. The fifth-order maximum of the unknown wavelength is located exactly at the third-order maximum of the red light. What is the unknown wavelength?
A Laser light is passed through a grating having 300 lines/mm and diffraction pattern is observed...
A Laser light is passed through a grating having 300 lines/mm and diffraction pattern is observed at 51.5 cm, 53.5cm and 55.5cm respectively. The diffraction pattern having separation of 103mm,107mm and 111mm between the maximum and minimum interference correspondingly. Calculate the wavelength of laser? Also calculate the percentage error if the actual wavelength of laser is 660nm.  
You have a diffraction grating with 3000 lines/cm. You also have a light source that emits...
You have a diffraction grating with 3000 lines/cm. You also have a light source that emits light at 2 different wavelengths, 428 nm and 707 nm, at the same time. The screen for your experiment is 1.5 meters from the diffraction grating. A. What is the line spacing for the grating? B. What is the difference in the angle of the 2nd bright fringe for each wavelength for this grating? C. Which wavelength is closer to the center of the...
Consider a diffraction grating with 600 lines per millimeter. Light from a light–emitting diode at λ...
Consider a diffraction grating with 600 lines per millimeter. Light from a light–emitting diode at λ = 830 nm with a bandwidth of ±10 nm is passed through a slit and a lens where it is collimated onto the grating at an angle of incidence of -5 degrees. a. What is the range of angles in degrees to which the light is diffracted? b. To make a spectrometer, I would like to place a camera chip with a 1–by– 1200...
A slit 0.100 cm wide is illuminated by light of wavelength 529. nm creating a diffraction...
A slit 0.100 cm wide is illuminated by light of wavelength 529. nm creating a diffraction pattern on a screen 284. cm away. How many millimeters are between the first 4 diffraction minima on the same side of the central diffraction maximum?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT