Question

In: Physics

A 1.2-cm-wide diffraction grating has 1000 slits. It is illuminated by light of wavelength 510 nm....

A 1.2-cm-wide diffraction grating has 1000 slits. It is illuminated by light of wavelength 510 nm. What are the angles of the first two diffraction orders? Answer = ∘,∘

Solutions

Expert Solution

Width of the grating w = 1.2 cm = 1.2 x10 -2 m

Number of slits N = 1000

wavelength = 510 nm = 510 x10 -9 m

Grating element d = w / N

                           = 1.2 x10 -5 m

Condition for first order is d sin =

   sin = / d

            = (510 x10 -9 ) /(1.2 x10 -5 )

            = 0.0425

         = 2.435 o

Condition for second order is d sin = 2

   sin = 2/ d

            = 2(510 x10 -9 ) /(1.2 x10 -5 )

            = 2(0.0425) = 0.85

         = 4.876 o


Related Solutions

A 1.2-cm-wide diffraction grating has 1000 slits. It is illuminated by light of wavelength 510 nm....
A 1.2-cm-wide diffraction grating has 1000 slits. It is illuminated by light of wavelength 510 nm. What are the angles of the first two diffraction orders? Answer = ∘,∘
A diffraction grating is illuminated first with red light of wavelength 600 nm and then with...
A diffraction grating is illuminated first with red light of wavelength 600 nm and then with light of an unknown wavelength. The fifth-order maximum of the unknown wavelength is located exactly at the third-order maximum of the red light. What is the unknown wavelength?
A slit 0.100 cm wide is illuminated by light of wavelength 529. nm creating a diffraction...
A slit 0.100 cm wide is illuminated by light of wavelength 529. nm creating a diffraction pattern on a screen 284. cm away. How many millimeters are between the first 4 diffraction minima on the same side of the central diffraction maximum?
A 500 lines per mm diffraction grating is illuminated by light of wavelength 620 nm ....
A 500 lines per mm diffraction grating is illuminated by light of wavelength 620 nm . Part B What is the angle of each diffraction order? Enter your answers using two significant figures in ascending order separated by commas.
A 500 lines per mm diffraction grating is illuminated by light of wavelength 640 nm. 1....
A 500 lines per mm diffraction grating is illuminated by light of wavelength 640 nm. 1. What is the maximum diffraction order seen? Express your answer as an integer. 2. What is the angle of each diffraction order starting from zero diffraction order to the maximum visible diffraction order? Enter your answers in degrees in ascending order separated by commas.
1) The light shining on a diffraction grating has a wavelength of 477 nm (in vacuum)....
1) The light shining on a diffraction grating has a wavelength of 477 nm (in vacuum). The grating produces a second-order bright fringe whose position is defined by an angle of 9.71°. How many lines per centimeter does the grating have? 2) The wavelength of the laser beam used in a compact disc player is 566 nm. Suppose that a diffraction grating produces first-order tracking beams that are 1.1 mm apart at a distance of 3.1 mm from the grating....
A diffraction grating has 25,000 lines/cm and is illuminated with light having a frequency of 5.0...
A diffraction grating has 25,000 lines/cm and is illuminated with light having a frequency of 5.0 x 10​14​ Hz. What are the angles of (a) the first-order bright fringe and (b) the second-order bright fringe?
A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm.
A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm. What is the width of the central maximum on a screen 2.0 m behind the slit in mm?  
A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm.
A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm. What is the width of the central maximum on a screen 2.0 m behind the slit?
In a diffraction grating experiment, green light of wavelength  λ = 533 nm is directed on a...
In a diffraction grating experiment, green light of wavelength  λ = 533 nm is directed on a diffraction grating that has N = 577 /mm lines. The diffraction pattern is projected on a screen that's located 172.5 (cm from the grating. Find the distance  between the first bright fringe and third dark fringe on the screen. your answer should be in SI units (meters) This is a diffraction grating problem, you can not use the approximation
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT