Question

In: Physics

You have a diffraction grating with 3000 lines/cm. You also have a light source that emits...

You have a diffraction grating with 3000 lines/cm. You also have a light source that emits light at 2 different wavelengths, 428 nm and 707 nm, at the same time. The screen for your experiment is 1.5 meters from the diffraction grating.

A. What is the line spacing for the grating?

B. What is the difference in the angle of the 2nd bright fringe for each wavelength for this grating?

C. Which wavelength is closer to the center of the diffraction pattern?

D. How would the color separation be different if you used a 1200 lines/cm grating? Explain.

E. What is the width of the central maximum for each wavelength if the same light source is used to illuminate a single slit with a width of 0.054 mm?

Solutions

Expert Solution


Related Solutions

A diffraction grating has 25,000 lines/cm and is illuminated with light having a frequency of 5.0...
A diffraction grating has 25,000 lines/cm and is illuminated with light having a frequency of 5.0 x 10​14​ Hz. What are the angles of (a) the first-order bright fringe and (b) the second-order bright fringe?
700nm light strikes a 12,000 lines / cm diffraction grating a) determine the angular separation of...
700nm light strikes a 12,000 lines / cm diffraction grating a) determine the angular separation of the second maximum from the center. Explain what happens to the second one in this case.
Consider a diffraction grating with 600 lines per millimeter. Light from a light–emitting diode at λ...
Consider a diffraction grating with 600 lines per millimeter. Light from a light–emitting diode at λ = 830 nm with a bandwidth of ±10 nm is passed through a slit and a lens where it is collimated onto the grating at an angle of incidence of -5 degrees. a. What is the range of angles in degrees to which the light is diffracted? b. To make a spectrometer, I would like to place a camera chip with a 1–by– 1200...
A student used a diffraction grating with 633 lines/mm to determine an unknown wavelength of light....
A student used a diffraction grating with 633 lines/mm to determine an unknown wavelength of light. The light passed through the grating, and the pattern was observed on a paper placed 90.0 cm past the grating. The distance from the center bright spot to the second bright spot from the center was measured to be 71.9 cm. What was the wavelength of light in nanometers (nm)? (State answer in nanometers as a whole number with no digits right of decimal.)
A 500 lines per mm diffraction grating is illuminated by light of wavelength 620 nm ....
A 500 lines per mm diffraction grating is illuminated by light of wavelength 620 nm . Part B What is the angle of each diffraction order? Enter your answers using two significant figures in ascending order separated by commas.
You have 2 diffraction gratings, one with 2000 lines/cm, the other with 5000 lines/cm. You are...
You have 2 diffraction gratings, one with 2000 lines/cm, the other with 5000 lines/cm. You are also given a light source that emits 450 nm blue light and 530 nm green light at the same time. A. What is the line spacing for each grating? B. What is the difference in the angle of the 2nd order maximum for each wavelength if you use the 5000 line/cm grating?? C. Which color is closer to the center of the diffraction pattern?...
Light shines on a diffraction grating with a 4000 rulings (slits) per cm, which is immersed...
Light shines on a diffraction grating with a 4000 rulings (slits) per cm, which is immersed in water (refractive index=1.33), resulting in a 3rd order spectral line at a diffraction angle of 35 degrees. What is the wavelength of the light in air?
A Laser light is passed through a grating having 300 lines/mm and diffraction pattern is observed...
A Laser light is passed through a grating having 300 lines/mm and diffraction pattern is observed at 51.5 cm, 53.5cm and 55.5cm respectively. The diffraction pattern having separation of 103mm,107mm and 111mm between the maximum and minimum interference correspondingly. Calculate the wavelength of laser? Also calculate the percentage error if the actual wavelength of laser is 660nm.  
Laser light of some wavelength λ1 shines on a diffraction grating with 285 lines/mm at normal...
Laser light of some wavelength λ1 shines on a diffraction grating with 285 lines/mm at normal incidence, producing a pattern of maxima on a large screen 1.50 m from the grating. The first principal maximum is observed to be at an angle of 8.20° from the central maximum. (a) Determine the wavelength of the incident light. (b) A second laser of wavelength λ2 is added, and it is observed that the third principal maximum of λ2 is at the same...
A 500 lines per mm diffraction grating is illuminated by light of wavelength 640 nm. 1....
A 500 lines per mm diffraction grating is illuminated by light of wavelength 640 nm. 1. What is the maximum diffraction order seen? Express your answer as an integer. 2. What is the angle of each diffraction order starting from zero diffraction order to the maximum visible diffraction order? Enter your answers in degrees in ascending order separated by commas.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT