Question

In: Advanced Math

Let R be a ring and f : M −→ N a morphism of left R-modules. Show that:

Let R be a ring and f : M −→ N a morphism of left R-modules. Show that:

c) K := {m ∈ M | f(m) = 0} satisfies the Universal Property of Kernels.

d) N/f(M) satisfies the Universal Property of Cokernels.

Q2. Show that ZQ :
a) contains no minimal Z-submodule

Solutions

Expert Solution


Related Solutions

Let R be a ring and f : M −→ N a morphism of left R-modules. Show that:
Let R be a ring and f : M −→ N a morphism of left R-modules. Show that: c) K := {m ∈ M | f(m) = 0} satisfies the Universal Property of Kernels. d) N/f(M) satisfies the Universal Property of Cokernels.  
Let R be a ring and n ∈ N. Let S = Mn(R) be the ring...
Let R be a ring and n ∈ N. Let S = Mn(R) be the ring of n × n matrices with entries in R. a) i) Let T be the subset of S consisting of the n × n diagonal matrices with entries in R (so that T consists of the matrices in S whose entries off the leading diagonal are zero). Show that T is a subring of S. We denote the ring T by Dn(R). ii). Show...
Let F be a field and R = Mn(F) the ring of n×n matrices with entires...
Let F be a field and R = Mn(F) the ring of n×n matrices with entires in F. Prove that R has no two sided ideals except (0) and (1).
let R be a ring; X a non-empty set and (F(X, R), +, *) the ring...
let R be a ring; X a non-empty set and (F(X, R), +, *) the ring of the functions from X to R. Show directly the associativity of the multiplication of F(X, R). Assume that R is unital and commutative. show that F(X, R) is also unital and commutative.
2 Let F be a field and let R = F[x, y] be the ring of...
2 Let F be a field and let R = F[x, y] be the ring of polynomials in two variables with coefficients in F. (a) Prove that ev(0,0) : F[x, y] → F p(x, y) → p(0, 0) is a surjective ring homomorphism. (b) Prove that ker ev(0,0) is equal to the ideal (x, y) = {xr(x, y) + ys(x, y) | r,s ∈ F[x, y]} (c) Use the first isomorphism theorem to prove that (x, y) ⊆ F[x, y]...
c) Let R be any ring and let ??(?) be the set of all n by...
c) Let R be any ring and let ??(?) be the set of all n by n matrices. Show that ??(?) is a ring with identity under standard rules for adding and multiplying matrices. Under what conditions is ??(?) commutative?
Let A be a commutative ring and F a field. Show that A is an algebra...
Let A be a commutative ring and F a field. Show that A is an algebra over F if and only if A contains (an isomorphic copy of) F as a subring.
Let function F(n, m) outputs n if m = 0 and F(n, m − 1) +...
Let function F(n, m) outputs n if m = 0 and F(n, m − 1) + 1 otherwise. 1. Evaluate F(10, 6). 2. Write a recursion of the running time and solve it . 3. What does F(n, m) compute? Express it in terms of n and m.
show that for any n the matrix ring M_n(F) is simple over a field F. show...
show that for any n the matrix ring M_n(F) is simple over a field F. show your work. Do not use quotient rings!
Let R be a commutative ring with unity. Prove that f(x) is R[x] is a unit...
Let R be a commutative ring with unity. Prove that f(x) is R[x] is a unit in R[x] iff f(x)=a is of degree 0 and is a unit in R.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT