Question

In: Finance

A futures price is currently $3000 and its volatility is 25%. The risk-free interest rate is...

A futures price is currently $3000 and its volatility is 25%. The risk-free interest rate is 5% per annum.

a) Use a two-step binomial tree to derive the value today of a one-year European put option with a strike price of $2900 written on the futures contract.

b) Use put-call parity to value the one-year European call option with a strike price of $2900 written on the futures contract.

c) How would you hedge today a short position in the put option? Derive the futures position you would take.

Solutions

Expert Solution

Proper explanation is given with step by step by solution.


Related Solutions

A futures price is currently $3000 and its volatility is 25%. The risk-free interest rate is...
A futures price is currently $3000 and its volatility is 25%. The risk-free interest rate is 5% per annum. a) Use a two-step binomial tree to derive the value today of a one-year European put option with a strike price of $2900 written on the futures contract. b) Use put-call parity to value the one-year European call option with a strike price of $2900 written on the futures contract. c) How would you hedge today a short position in the...
A futures price is currently $25, its volatility (SD) is 30% per annum, and the risk-free...
A futures price is currently $25, its volatility (SD) is 30% per annum, and the risk-free interest rate is 10% per annum. What is the value of a nine-month European call on the futures with a strike price of $26 according to the BSM option pricing model? 1.75 2.67 3.67 2.008
A futures price is currently $25, its volatility (SD) is 30% per annum, and the risk-free...
A futures price is currently $25, its volatility (SD) is 30% per annum, and the risk-free interest rate is 10% per annum. What is the value of a nine-month European call on the futures with a strike price of $26 according to the BSM option pricing model? 2.50 2.936 3.50 3.20
A stock price is currently AUD 70; the risk-free rate is 5% and the volatility is...
A stock price is currently AUD 70; the risk-free rate is 5% and the volatility is 30%. What is the value of a two-year American put option with a strike price of AUD 72
The volatility of a non-dividend-paying stock whose price is $55, is 25%. The risk-free rate is...
The volatility of a non-dividend-paying stock whose price is $55, is 25%. The risk-free rate is 4% per annum (continuously compounded) for all maturities. Use a two-step tree to calculate the value of a derivative that pays off [max(St − 62, 0)]" where St is the stock price in four months?
A stock index is currently 1,000. Its volatility is 20%. The risk-free rate is 5% per...
A stock index is currently 1,000. Its volatility is 20%. The risk-free rate is 5% per annum (continuously compounded) for all maturities and the dividend yield on the index is 3%. Calculate values for u, d, and p when a six-month time step is used. What is the value a 12-month American put option with a strike price of 980 given by a two-step binomial tree.
A stock index is currently 1,500. Its volatility is 18%. The risk-free rate is 4% per...
A stock index is currently 1,500. Its volatility is 18%. The risk-free rate is 4% per annum for all maturities and the dividend yield on the index is 2.5% (both continuously compounded). Calculate values for u, d, and p when a 6-month time step is used. What is value of a 12-month European put option with a strike price of 1,480 given by a two-step binomial tree?
Assume the spot price of the British pound is currently $1.8. If the risk-free interest rate...
Assume the spot price of the British pound is currently $1.8. If the risk-free interest rate on 1-year government bonds is 4.4% in the United States and 7.2% in the United Kingdom, what must be the forward price of the pound for delivery one year from now? (Do not round intermediate calculations. Round your answer to 3 decimal places.)
A stock index currently stands at 300 and has a volatility of 20%. The risk-free interest...
A stock index currently stands at 300 and has a volatility of 20%. The risk-free interest rate is 8% and the dividend yield on the index is 3%. Use a three-step binomial tree to evaluate a six-month put option on the index with a strike price of 300 if it is (a) European and (b) American?
A stock price is $50 with annual volatility of 20%. Assume a risk-free rate of 6%...
A stock price is $50 with annual volatility of 20%. Assume a risk-free rate of 6% p.a. The strike price of a European put is $50 and the time to maturity is 4 months. Calculate the following Greeks for the put: 11.1 Delta 11.2 Theta 11.3 Gamma 11.4 Vega 11.5 Rho If the stock price changes by $2 over a short period of time, estimate the change in option price using the Greeks?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT