In: Finance
A stock index currently stands at 300 and has a volatility of 20%. The risk-free interest rate is 8% and the dividend yield on the index is 3%. Use a three-step binomial tree to evaluate a six-month put option on the index with a strike price of 300 if it is (a) European and (b) American?
Standard Options | Period | 1 | 2 | 3 | ||||||||
European or American | E | Option Price | 14.3917 | 300 | 325.5227 | 353.2167 | 383.2668 | |||||
Call or Put | P | uptick factor | 1.085076 | 276.4784 | 300 | 325.5227 | ||||||
Current Asset Price | S(0) | 300 | downtick factor | 0.921595 | 254.8011 | 276.4784 | ||||||
Strike Price | X | 300 | Upside probability | 0.530786 | 234.8233 | |||||||
Time to Maturity | T | 0.5 | Downside probability | 0.469214 | Price | |||||||
Volatility | 0.2 | 14.3917 | 5.042274 | 0 | 0 | |||||||
Risk-Free Interest Rate | r | 0.08 | 25.37969 | 10.89046 | 0 | |||||||
Dividend Yield | q | 0.03 | 42.4963 | 23.52157 | ||||||||
No of Steps | n | 3 | 65.17666 | |||||||||
Standard Options | Period | 1 | 2 | 3 | ||||||||
European or American | A | Option Price | 14.97105 | 300 | 325.5227 | 353.2167 | 383.2668 | |||||
Call or Put | P | uptick factor | 1.085076 | 276.4784 | 300 | 325.5227 | ||||||
Current Asset Price | S(0) | 300 | downtick factor | 0.921595 | 254.8011 | 276.4784 | ||||||
Strike Price | X | 300 | Upside probability | 0.530786 | 234.8233 | |||||||
Time to Maturity | T | 0.5 | Downside probability | 0.469214 | Price | |||||||
Volatility | zigma | 0.2 | 14.97105 | 5.042274 | 0 | 0 | ||||||
Risk-Free Interest Rate | r | 0.08 | 26.631 | 10.89046 | 0 | |||||||
Dividend Yield | q | 0.03 | 45.19892 | 23.52157 | ||||||||
No of Steps | n | 3 | 65.17666 | |||||||||
Hope the solution was useful, kindly hit the "thums up" button to rate the solution.