In: Finance
A stock index is currently 1,500. Its volatility is 18%. The risk-free rate is 4% per annum for all maturities and the dividend yield on the index is 2.5% (both continuously compounded). Calculate values for u, d, and p when a 6-month time step is used. What is value of a 12-month European put option with a strike price of 1,480 given by a two-step binomial tree?
GIVEN | Strike price | X | 1480 | ||||||||
Current stock price | S | 1500 | |||||||||
Risk free interest rate per annum | Rf | 4% | |||||||||
Dividend yield | dy | 2.50% | |||||||||
Length of time step (in years) | n1 | 0.5 | square root = | 0.707106781 | |||||||
Volatility | σ | 18% | |||||||||
COMPUTED | Up factor | u | e to the power (σ*square root of n) | e to the power (G8*I7) | 1.136 | ||||||
down factor | d | 1/u | 1/I9 | 0.88 | |||||||
probability (up) | p | e to the power (Rf-dy)*nn-d)/(u-d) | 1.0075 | 0.498 | |||||||
probability (down) | 1-p | 0.502 | |||||||||
1934.8379 | (put premium = IF (G3-J16>0,(G3-J16),0) | 0 | |||||||||
1,703.60 | Put premium = 0 | 0 | |||||||||
Stock price | 1500 | 1500 | put premium = 0 | 0 | |||||||
put premium= | 242.18 | 1,320.73 | Put premium = 277.13 | 159.27 | |||||||
1162.8881 | put premium = 1480-1162 | 317.11188 | |||||||||
put price | 244.01 | 279.21 | |||||||||
1.007528195 | 1.00753 | ||||||||||
ANSWER | 242.18 | 277.13 | |||||||||
put price formula | (0*1.136+277.13*0.88)/dividing factor | (0*1.136+0*0.88)/dividing factor | |||||||||
dividing factor | e to the power (Rf-dy)*n | e to the power (Rf-dy)*n | |||||||||