Question

In: Advanced Math

Find the characteristics and characteristic coordinates, and reduce the following equation to canonical form: for y>0...

Find the characteristics and characteristic coordinates, and reduce the following equation to canonical form:

for y>0 only

Uxx+yUyy=0

Solutions

Expert Solution

This system is elliptical so we need to transform for a second time to get the real and imaginary part of characteristic. We can take this second transformation prior and then do the calculation or we can calculate and then apply this transformation. Both are correct. I have opted for the later one. Though you can obviously use the transformation (alpha, beta) at first and then calculate. You will get the same answer.

Hope you like the answer ?


Related Solutions

Classify the following equation and reduce it to canonical form: yUxx-xUyy=0 , x>0 , y>0
Classify the following equation and reduce it to canonical form: yUxx-xUyy=0 , x>0 , y>0
Find the characteristics and the minimal polynomial of the following matrices over R, then deduce the their corresponding Jordan Canonical Form J.
Find the characteristics and the minimal polynomial of the following matrices over \( \mathbb{R} \), then deduce the their corresponding Jordan Canonical Form J. A=\( \begin{pmatrix}1&-1&-1\\ 0&0&-1\\ 0&1&2\end{pmatrix}\: \)
Find the characteristics and the minimal polynomial of the following matrices over R , then deduce the their corresponding Jordan Canonical Form J.
Find the characteristics and the minimal polynomial of the following matrices over \( \mathbb{R} \), then deduce the their corresponding Jordan Canonical Form J. B=\( \begin{pmatrix}2&-1&-1&2\\ 0&1&-1&2\\ 2&-5&-1&6\\ 1&-3&-2&6\end{pmatrix} \)
Find the characteristics and the minimal polynomial of the following matrices over R, then deduce their corresponding Jordan Canonical Form J.
Find the characteristics and the minimal polynomial of the following matrices over R, then deduce their corresponding Jordan Canonical Form J. C=\( \begin{pmatrix}1&1&0&0\\ -1&-1&1&0\\ 0&1&1&0\\ -1&-1&1&1\end{pmatrix} \)  
Find the power series solution for the equation y'' + (sinx)y = x; y(0) = 0;...
Find the power series solution for the equation y'' + (sinx)y = x; y(0) = 0; y'(0) = 1 Provide the recurrence relation for the coefficients and derive at least 3 non-zero terms of the solution.
Solve the initial value problem: 4y''+12y'+9y=0 y(0)=1, y'(0)=-4 a. Using the characteristic equation of the above....
Solve the initial value problem: 4y''+12y'+9y=0 y(0)=1, y'(0)=-4 a. Using the characteristic equation of the above. b. Using Laplace transform.
Solve the Following Equation: y'' + y' + y = a*sin(ω*t), y(0) = 0 , y'(0)...
Solve the Following Equation: y'' + y' + y = a*sin(ω*t), y(0) = 0 , y'(0) = 0 Thanks
The following are the Jordan Canonical Form of linear transformations. Find the characteristic polynomial, minimal polynomials, the algebraic multiplicity, geometric multiplicity and the index of each of the eigenvalues of L.
The following are the Jordan Canonical Form of linear transformations. Find the characteristic polynomial, minimal polynomials, the algebraic multiplicity, geometric multiplicity and the index of each of the eigenvalues of L. B=\( \begin{pmatrix}2&1&0&0\\ 0&2&0&0\\ 0&0&3&0\\ 0&0&0&3\end{pmatrix} \)
The following are the Jordan Canonical Form of linear transformations. Find the characteristic polynomial, minimal polynomials, the algebraic multiplicity, geometric multiplicity and the index of each of the eigenvalues of L.
The following are the Jordan Canonical Form of linear transformations. Find the characteristic polynomial, minimal polynomials, the algebraic multiplicity, geometric multiplicity and the index of each of the eigenvalues of L. A=\( \begin{pmatrix}2&0&0&0\\ 0&2&0&0\\ 0&0&1&0\\ 0&0&0&3\end{pmatrix} \)
Find The solution of the Differential Equation of (y+4x+2)dx - dy = 0, y(0) = 3...
Find The solution of the Differential Equation of (y+4x+2)dx - dy = 0, y(0) = 3 ( Please With Steps)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT