Question

In: Physics

Two loudspeakers, 1.1 mm apart, emit sound waves with the same frequency along the positive xx-axis....

Two loudspeakers, 1.1 mm apart, emit sound waves with the same frequency along the positive xx-axis. Victor, standing on the axis to the right of the speakers, hears no sound. As the frequency is slowly tripled, Victor hears the sound go through the sequence loud-soft-loud-soft-loud before becoming quiet again.

What was the original sound frequency? Assume room temperature of 20∘C∘C.

Express your answer with the appropriate units.

please write the answer neatly, another post similar to this one was difficult to read resulting in my answer being wrong.

Part A

What was the original sound frequency? Assume room temperature of 20∘C∘C.

Express your answer with the appropriate units.

Solutions

Expert Solution


Related Solutions

Two loudspeakers emit sound waves along the x-axis. The sound has maximum intensity when the speakers...
Two loudspeakers emit sound waves along the x-axis. The sound has maximum intensity when the speakers are 19 cm apart. The sound intensity decreases as the distance between the speakers is increased, reaching zero at a separation of 29 cm. What is the wavelength of the sound? Express your answer using two significant figures. If the distance between the speakers continues to increase, at what separation will the sound intensity again be a maximum? Express your answer using two significant...
Two loudspeakers emit sound waves along the x-axis. A listener in front of both speakers hears...
Two loudspeakers emit sound waves along the x-axis. A listener in front of both speakers hears a maximum sound intensity when speaker 2 is at the origin and speaker 1 is at x = 0.500m . If speaker 1 is slowly moved forward, the sound intensity decreases and then increases, reaching another maximum when speaker 1 is at x =0.850m . A)What is the frequency of the sound? Assume vsound =340m/s. B)What is the phase difference between the speakers?
Two loudspeakers emit sound waves along the x-axis. A listener in front of both speakers hears...
Two loudspeakers emit sound waves along the x-axis. A listener in front of both speakers hears a maximum sound intensity when speaker 2 is at the origin and speaker 1 is at x = 0.540m . If speaker 1 is slowly moved forward, the sound intensity decreases and then increases, reaching another maximum when speaker 1 is at x =0.930m . What is the phase difference between the speakers?
Two in-phase loudspeakers emit identical 1000 Hz sound waves along the x-axis. What distance should one...
Two in-phase loudspeakers emit identical 1000 Hz sound waves along the x-axis. What distance should one speaker be placed behind the other for the sound to have an amplitude 1.90 times that of each speaker alone?
Two small loudspeakers emit sound waves of different frequencies equally in all directions. Speaker A has...
Two small loudspeakers emit sound waves of different frequencies equally in all directions. Speaker A has an output of 1.30 mW, and speaker B has an output of 1.60 mW. Two speakers A and B are represented as points which serve as the centers of concentric circles representing sound waves emanating from the speakers. The concentric circles about speaker A are spaced more closely together than the concentric circles about speaker B. The points lie along a horizontal line, and...
Two small loudspeakers emit sound waves of different frequencies equally in all directions. Speaker A has...
Two small loudspeakers emit sound waves of different frequencies equally in all directions. Speaker A has an output of 1.30 mW, and speaker B has an output of 1.90 mW. Two speakers A and B are represented as points which serve as the centers of concentric circles representing sound waves emanating from the speakers. The concentric circles about speaker A are spaced more closely together than the concentric circles about speaker B. The points lie along a horizontal line, and...
Two sources emit sound with the same frequency. One source is at rest and the other...
Two sources emit sound with the same frequency. One source is at rest and the other is moving at a rate of 5 m / s toward the stationary observer. Observers hear kites 6 times per second. Determine the frequency of the sound emitted by the source.
Two speakers spaced a distance 1.5 m apart emit coherent sound waves at a frequency of 680 Hz in all directions. The waves start out in phase with each other.
Two speakers spaced a distance 1.5 m apart emit coherent sound waves at a frequency of 680 Hz in all directions. The waves start out in phase with each other. A listener walks in a circle of radius greater than 1 m centered on the midpoint of the two speakers. At how many points does the listener observe destructive interference? The listener and the speakers are all in the same horizontal plane and the speed of sound is 340 m/s....
Two speakers that are 16.0m apart produce sound waves of frequency 270Hz in a room where...
Two speakers that are 16.0m apart produce sound waves of frequency 270Hz in a room where the speed of sound is 340m/s . A woman starts out at the midpoint between the two speakers. The room
Two loudspeakers 6.0 m apart are playing the same frequency. If you stand 10.0 m in...
Two loudspeakers 6.0 m apart are playing the same frequency. If you stand 10.0 m in front of the plane of the speakers, centered between them, you hear a sound of maximum intensity. As you walk parallel to the plane of the speakers, staying 10.0 m in front of them, you first hear a minimum of sound intensity when you are directly in front of one of the speakers. PART A What is the frequency of the sound? Assume a...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT