Question

In: Statistics and Probability

Let the random variable X = the time between the moment the IRS receives your tax...

Let the random variable X = the time between the moment the IRS receives your tax return forms and the moment you receive your tax refund. It is known that X follows a uniform distribution over the range of 2 weeks and 10 weeks.

Define the following events: A = {it takes more than 5 weeks to receive your federal tax refund} and B = {it takes less than 8 weeks to receive your federal tax refund}. Are the events A and B independent?

Solutions

Expert Solution

thank you.


Related Solutions

Let random variable X be uniformly distributed in interval [0, T]. a) Find the nth moment...
Let random variable X be uniformly distributed in interval [0, T]. a) Find the nth moment of X about the origin. b) Let Y be independent of X and also uniformly distributed in [0, T]. Calculate the second moment about the origin, and the variance of Z = X + Y
Let 'x' be a random variable that represents the length of time it takes a student...
Let 'x' be a random variable that represents the length of time it takes a student to write a term paper for Dr. Adam's Sociology class. After interviewing many students, it was found that 'x' has an approximately normal distribution with a mean of µ = 7.3 hours and standard deviation of ơ = 0.8 hours. For parts a, b, c, Convert each of the following x intervals to standardized z intervals. a.) x < 8.1   z < b.) x...
Let the random variable X denote the time (hours) for which a part is waiting for...
Let the random variable X denote the time (hours) for which a part is waiting for the beginning of the inspection process since its arrival at the inspection station, and let Y denote the time (hours) until the inspection process is completed since its arrival at the inspection station. Since both X and Y measure the time since the arrival of the part at the inspection station, always X < Y is true. The joint probability density function for X...
Let T be a Kumaraswamy random variable, and X be a Weibull random variable, the T-X...
Let T be a Kumaraswamy random variable, and X be a Weibull random variable, the T-X family will be called the Kumaraswamy-Weibull distribution. Using W[F(x)]=F(x). Obtain (a) both the cdf and pdf of the Kumaraswamy-Weibull distribution. (b) both the hazard and reverse hazard function Kumaraswamy-Weibull distribution. (c) the quantile function Kumaraswamy-Weibull distribution.
Let X be a Gaussian(2,4) random variable. What is the probability that X falls between 0...
Let X be a Gaussian(2,4) random variable. What is the probability that X falls between 0 and 1? Write your answer as a decimal with two decimal places. Note 0.15 is incorrect
Let X be a continuous random variable that has a uniform distribution between 0 and 2...
Let X be a continuous random variable that has a uniform distribution between 0 and 2 and let the cumulative distribution function F(x) = 0.5x if x is between 0 and 2 and let F(x) = 0 if x is not between 0 and 2. Compute 1. the probability that X is between 1.4 and 1.8 2. the probability that X is less than 1.2 3. the probability that X is more than 0.8 4. the expected value of X...
Let X be a random variable such that P(X = 1) = 0.4 and P(X =...
Let X be a random variable such that P(X = 1) = 0.4 and P(X = 0) = 0.6.  Compute Var(X).
let x be the random variable in rolling two dice denotes the absolute difference between die...
let x be the random variable in rolling two dice denotes the absolute difference between die faces . (i) find the probability distribution f(x) and cumulative distribution F(x) . ii) plot f(x) and F(x) iii) find the mean and variance of x and of g(x) = 3x + 7
(a) Let X be a binomial random variable with parameters (n, p). Let Y be a...
(a) Let X be a binomial random variable with parameters (n, p). Let Y be a binomial random variable with parameters (m, p). What is the pdf of the random variable Z=X+Y? (b) Let X and Y be indpenednet random variables. Let Z=X+Y. What is the moment generating function for Z in terms of those for X and Y? Confirm your answer to the previous problem (a) via moment generating functions.
Let X be a random variable that is equal to the number of times a 5...
Let X be a random variable that is equal to the number of times a 5 is rolled in three rolls of a fair 5-sided die with the integers 1 through 5 on the sides. What is E[X2 ]? What is E2 [X], that is, (E[X])2 ? Justify your answers briefly
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT