In: Statistics and Probability
Calculate the margin of error and construct a confidence interval for the population proportion using the normal approximation to the p̂ p̂ -distribution (if it is appropriate to do so).
Standard Normal Distribution Table
a. p̂ =0.9, n=160, α =0.2 p̂ =0.9, n=160, α =0.2
E=E=
Round to four decimal places
Enter 0 if normal approximation cannot be used
< p < < p <
Round to four decimal places
Enter 0 if normal approximation cannot be used
b. p̂ =0.45, n=140, α =0.2 p̂ =0.45, n=140, α =0.2
E=E=
Round to four decimal places
Enter 0 if normal approximation cannot be used
< p < < p <
Round to four decimal places
Enter 0 if normal approximation cannot be used
Please provide correct answer. thanks.
Solution :
Given that,
a) Point estimate = sample proportion = = 0.9
1 - = 1 - 0.9 = 0.1
Z/2 = Z0.01 = 2.33
Margin of error = E = Z / 2 * (( * (1 - )) / n)
= 2.33 (((0.9 * 0.1) / 160)
= 0.0553
A 98% confidence interval for population proportion p is ,
- E < p < + E
0.9 - 0.0553 < p < 0.9 + 0.0553
( 0.8447 < p < 0.9553 )
b) Point estimate = sample proportion = = 0.45
1 - = 1 - 0.45 = 0.55
Z/2 = Z0.01 = 2.33
Margin of error = E = Z / 2 * (( * (1 - )) / n)
= 2.33 (((0.45 * 0.55) / 140)
= 0.0980
A 98% confidence interval for population proportion p is ,
- E < p < + E
0.45 - 0.0980 < p < 0.45 + 0.0980
( 0.3520 < p < 0.5480 )