In: Statistics and Probability
Calculate the margin of error and construct the confidence interval for the population mean using the Student's t-distribution (you may assume the population data is normally distributed).
T-Distribution Table
a. x̄ =87.3, n=64, s=19.6, x̄ =87.3, n=64, s=19.6, 98% confidence
E=E=
Round to two decimal places
< μ < < μ <
Round to two decimal places
b. x̄ =31.6, n=44, s=14.6, x̄ =31.6, n=44, s=14.6, 90% confidence
E=E=
Round to two decimal places
< μ < < μ <
Round to two decimal places
Please provide correct answers. thanks
Solution :
a) degrees of freedom = n - 1 = 64 - 1 = 63
t/2,df = t0.01,63 = 2.387
Margin of error = E = t/2,df * (s /n)
= 2.387 * ( 19.6 / 64)
Margin of error = E = 5.85
The 98% confidence interval estimate of the population mean is,
- E < < + E
87.3 - 5.85 < < 87.3 + 5.85
( 81.45 < < 93.15 )
b) degrees of freedom = n - 1 = 44 - 1 = 43
t/2,df = t0.05,43 = 1.681
Margin of error = E = t/2,df * (s /n)
= 1.681 * ( 14.6 / 44)
Margin of error = E = 3.70
The 90% confidence interval estimate of the population mean is,
- E < < + E
31.6 - 3.70 < < 31.6 + 3.70
( 27.90 < < 35.30 )