In: Statistics and Probability
The accompanying table shows a portion of a data set that refers to the property taxes owed by a homeowner (in $) and the size of the home (in square feet) in an affluent suburb 30 miles outside New York City.
| Taxes | Size | 
| 21922 | 2446 | 
| 17362 | 2521 | 
| 18285 | 1732 | 
| 15662 | 1039 | 
| 43973 | 5633 | 
| 33629 | 2523 | 
| 15195 | 2163 | 
| 16693 | 1938 | 
| 18247 | 2061 | 
| 16036 | 1267 | 
| 15163 | 1306 | 
| 36002 | 3034 | 
| 31043 | 2880 | 
| 42063 | 3376 | 
| 14432 | 1491 | 
| 38914 | 3943 | 
| 25383 | 3930 | 
| 22991 | 2390 | 
| 16236 | 3511 | 
| 29263 | 2828 | 
a. Estimate the sample regression equation that enables us to predict property taxes on the basis of the size of the home. (Round your answers to 2 decimal places.)
TaxesˆTaxes^ = ______ + ______ Size.
b. Interpret the slope coefficient.
As Property Taxes increase by 1 dollar, the size of the house increases by 6.86 ft.
As Size increases by 1 square foot, the property taxes are predicted to increase by $6.86.
c. Predict the property taxes for a
1,500-square-foot home. (Round coefficient estimates to at
least 4 decimal places and final answer to 2 decimal
places.)
TaxesˆTaxes^ ________
Using Excel, (Data -> Data Analysis -> Regression), we get the following output -

a) The estimated sample regression equation that enables us to predict property taxes on the basis of the size of the home is

b) As Size increases by 1 square foot, the property taxes are predicted to increase by $6.86.
c) The predicted property taxes for a 1,500-square-foot home
= 6581.7 + (6.86*1500)
= 16871.7