In: Statistics and Probability
The accompanying table shows a portion of a data set that refers to the property taxes owed by a homeowner (in $) and the size of the home (in square feet) in an affluent suburb 30 miles outside New York City.
Taxes | Size |
21972 | 2330 |
17347 | 2427 |
18263 | 1873 |
15636 | 1098 |
43971 | 5639 |
33623 | 2429 |
15188 | 2332 |
16750 | 1898 |
18236 | 2108 |
16089 | 1245 |
15126 | 1227 |
36053 | 3027 |
31050 | 2814 |
42032 | 3329 |
14362 | 1635 |
38961 | 4074 |
25312 | 4016 |
22960 | 2470 |
16162 | 3584 |
29264 | 2879 |
Taxes | Size |
21972 | 2330 |
17347 | 2427 |
18263 | 1873 |
15636 | 1098 |
43971 | 5639 |
33623 | 2429 |
15188 | 2332 |
16750 | 1898 |
18236 | 2108 |
16089 | 1245 |
15126 | 1227 |
36053 | 3027 |
31050 | 2814 |
42032 | 3329 |
14362 | 1635 |
38961 | 4074 |
25312 | 4016 |
22960 | 2470 |
16162 | 3584 |
29264 | 2879 |
Taxes | Size |
21,972 | 2,330 |
17,347 | 2,427 |
⋮ | ⋮ |
29,264 | 2,879 |
a. Estimate the sample regression equation that
enables us to predict property taxes on the basis of the size of
the home. (Round your answers to 2 decimal
places.)
TaxesˆTaxes^ = + Size.
b. Interpret the slope coefficient.
As Size increases by 1 square foot, the property taxes are predicted to increase by $6.67.
As Property Taxes increase by 1 dollar, the size of the house increases by 6.67 ft.
c. Predict the property taxes for a
1,600-square-foot home. (Round coefficient estimates to at
least 4 decimal places and final answer to 2 decimal
places.)
TaxesˆTaxes^
a.
X - Mx | Y - My | (X - Mx)2 | (X - Mx)(Y - My) |
-291.7 | -2445.85 | 85088.89 | 713454.445 |
-194.7 | -7070.85 | 37908.09 | 1376694.495 |
-748.7 | -6154.85 | 560551.69 | 4608136.195 |
-1523.7 | -8781.85 | 2321661.69 | 13380904.85 |
3017.3 | 19553.15 | 9104099.29 | 58997719.5 |
-192.7 | 9205.15 | 37133.29 | -1773832.405 |
-289.7 | -9229.85 | 83926.09 | 2673887.545 |
-723.7 | -7667.85 | 523741.69 | 5549223.045 |
-513.7 | -6181.85 | 263887.69 | 3175616.345 |
-1376.7 | -8328.85 | 1895302.89 | 11466327.8 |
-1394.7 | -9291.85 | 1945188.09 | 12959343.2 |
405.3 | 11635.15 | 164268.09 | 4715726.295 |
192.3 | 6632.15 | 36979.29 | 1275362.445 |
707.3 | 17614.15 | 500273.29 | 12458488.3 |
-986.7 | -10055.85 | 973576.89 | 9922107.195 |
1452.3 | 14543.15 | 2109175.29 | 21121016.75 |
1394.3 | 894.15 | 1944072.49 | 1246713.345 |
-151.7 | -1457.85 | 23012.89 | 221155.845 |
962.3 | -8255.85 | 926021.29 | -7944604.455 |
257.3 | 4846.15 | 66203.29 | 1246914.395 |
SS: 23602072.2 | SP: 157390355.1 |
Sum of X = 52434
Sum of Y = 488357
Mean X = 2621.7
Mean Y = 24417.85
Sum of squares (SSX) = 23602072.2
Sum of products (SP) = 157390355.1
Regression Equation = ŷ = bX + a
b = SP/SSX =
157390355.1/23602072.2 = 6.67
a = MY - bMX = 24417.85 -
(6.67*2621.7) = 6935.05
ŷ = 6.67X + 6935.05
b. As we see that size is independent variable and taxes are dependent variable. So slope is rate of change in y, for constant change in x. Hence answer is as below.
As Size increases by 1 square foot, the property taxes are predicted to increase by $6.67.
c. For x=1600, ŷ = (6.67*1600) + 6935.05=17607.05