Question

In: Physics

a spherical shell of mass 2.0 kg rolls without slipping down a 38 degree slope A)...

a spherical shell of mass 2.0 kg rolls without slipping down a 38 degree slope A) Find the acceleration, the friction force, and the minimum coefficient of friction needed to prevent slipping. B) if the spherical starts from rest at the top how fast is the center of mass moving at the bottom of the slope if the slope is 1.50 m high? PLEASE INCLUDE DIAGRAM

Solutions

Expert Solution


Related Solutions

A hollow, spherical shell with mass 1.80 kg rolls without slipping down a slope angled at...
A hollow, spherical shell with mass 1.80 kg rolls without slipping down a slope angled at 40.0 ∘. Part A Find the acceleration. Take the free fall acceleration to be g = 9.80 m/s2 partB Find the friction force. Take the free fall acceleration to be g = 9.80 m/s2 Part C Find the minimum coefficient of friction needed to prevent slipping.
a 1m radius cylinder with a mass of 852.9 kg rolls without slipping down a hill...
a 1m radius cylinder with a mass of 852.9 kg rolls without slipping down a hill which is 82.1 meters high. at the bottom of the hill what friction of its total kinetic energy is invested in rotational kinetic energy
A, A thin cylindrical shell is released from rest and rolls without slipping down an inclined...
A, A thin cylindrical shell is released from rest and rolls without slipping down an inclined ramp, a distance s, that makes an angle of θ with the horizontal. If the coefficient of friction is µK, what is the speed at the bottom of the ramp? 2, A force P pushes a block at an angle 30° from the vertical across the ceiling. There is a coefficient of kinetic friction, µk. What is the acceleration?
A 12-kg cylinder of radius 0.10 m starts at rest and rolls without slipping down a...
A 12-kg cylinder of radius 0.10 m starts at rest and rolls without slipping down a ramp that is 4.5 m long and inclined at 30? to the horizontal. When the cylinder leaves the end of the ramp, it drops 5.0 m to the ground. At what horizontal distance from the end of the ramp does it land?
A uniform hoop of mass M and radius R rolls down an incline without slipping, starting...
A uniform hoop of mass M and radius R rolls down an incline without slipping, starting from rest. The angle of inclination of the incline is θ. a. After moving a distance L along the incline, what is the angular speed ω of the hoop? b. If the coefficient of static friction between the hoop and the incline is µs = 1/3, what is the greatest possible value of θ such that no slipping occurs between the hoop and the...
A uniform spherical shell of mass M = 2.0 kg and radius R = 13.0 cm...
A uniform spherical shell of mass M = 2.0 kg and radius R = 13.0 cm rotates about a vertical axis on frictionless bearings (see the figure). A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 1.92×10-3 kg m2 and radius r = 4.0 cm, and its attached to a small object of mass m = 4.0 kg. There is no friction on the pulley's axle; the cord does not slip...
A solid 0.5350-kg ball rolls without slipping down a track toward a loop-the-loop of radius R...
A solid 0.5350-kg ball rolls without slipping down a track toward a loop-the-loop of radius R = 0.8150 m. What minimum translational speed vmin must the ball have when it is a height H = 1.276 m above the bottom of the loop, in order to complete the loop without falling off the track?
A hollow ball, made of a thin plastic shell, rolls down a rough hill (no slipping)...
A hollow ball, made of a thin plastic shell, rolls down a rough hill (no slipping) of height h? from rest and across a level ground. It then approaches another hill, but this one is smooth and frictionless. a) Draw a diagram of this situation. (4 points) b) Write down the energy equation which represents the first half of the journey and simplify it to find an expression for the maximum linear velocity of the ball. (4 points) c) Write...
A ball rolls down along an incline without slipping. A block slides down from the same...
A ball rolls down along an incline without slipping. A block slides down from the same incline without friction. Assuming the two objects start from the same position, which of the following statement is correct?
Problem: a unifiorm hoop of mass m and radius r rolls without slipping on a fixed...
Problem: a unifiorm hoop of mass m and radius r rolls without slipping on a fixed cylinder of radius R. if the hoop is stats rolling from rest on top of the bigger cylinder, use the method of Lagrange multipliers to find the point at which the hoop fall off the cylinder. Question: I know how to derive Lagrange equeation. but to use the method of Lagrange multipliers, i have to finde constrain. solution says that f1, f2 are constrain....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT