Question

In: Physics

Problem: a unifiorm hoop of mass m and radius r rolls without slipping on a fixed...

Problem: a unifiorm hoop of mass m and radius r rolls without slipping on a fixed cylinder of radius R. if the hoop is stats rolling from rest on top of the bigger cylinder, use the method of Lagrange multipliers to find the point at which the hoop fall off the cylinder.

Question: I know how to derive Lagrange equeation. but to use the method of Lagrange multipliers, i have to finde constrain.

solution says that f1, f2 are constrain. i don't know why constrain should be f2.

f1=R+r-L=0: L is the distance from center of cylinder to center of hoop

f2= L(d_Thet/d_t) +r(d_Phi/d_t)

But i think, to not slipp...Hoop rotation distance is same as hoop travel distance on the cylinder surface.

So, i thought f2 as like below;

f2=r ( d_Thet/d_t)- R(d_Phi/d_t)=0

( d_Thet) is rotation angle of hoop,  (d_Phi) is sweep anglular by hoop on surface of cylinder.

Am i wrong?

Solutions

Expert Solution


Related Solutions

A uniform hoop of mass M and radius R rolls down an incline without slipping, starting...
A uniform hoop of mass M and radius R rolls down an incline without slipping, starting from rest. The angle of inclination of the incline is θ. a. After moving a distance L along the incline, what is the angular speed ω of the hoop? b. If the coefficient of static friction between the hoop and the incline is µs = 1/3, what is the greatest possible value of θ such that no slipping occurs between the hoop and the...
A hoop of mass M=400.g and radius R=20.0 cm is rolling without slipping in clockwise direction...
A hoop of mass M=400.g and radius R=20.0 cm is rolling without slipping in clockwise direction down an incline plane with the incline angle ? = 20? . 1. How much work is done by frictional force acting on the hoop on (1) translation, (2) rotation of the hoop? Show all work so that your final answer is justified. 2. How much is ???ℎ?? on the hoop? Explain by using your answer from part 1, and whatever other argument you...
3) A solid cylinder with mass 4kg and radius r=0.5 m rolls without slipping from a...
3) A solid cylinder with mass 4kg and radius r=0.5 m rolls without slipping from a height of 10 meters on an inclined plane with length 20 meters. a) Find the friction force so that it rolls without slippingb) Calculate the minimum coefficient of rolling friction muc) Calculate its speed as it arrives at the bottom of the inclined plane.
a 1m radius cylinder with a mass of 852.9 kg rolls without slipping down a hill...
a 1m radius cylinder with a mass of 852.9 kg rolls without slipping down a hill which is 82.1 meters high. at the bottom of the hill what friction of its total kinetic energy is invested in rotational kinetic energy
A thin-walled hollow cylinder with mass m1 and radius R1 rolls without slipping on the inner...
A thin-walled hollow cylinder with mass m1 and radius R1 rolls without slipping on the inner wall of a larger thin-walled hollow cylinder with mass m2 and radius R2 >> R1. Both cylinders' axes are aligned and horizontal, and some magical mechanism ensures this perfect friction contact between them. Unfortunately for you, the larger cylinder rolls without slipping on a horizontal surface. Describe the motion including small oscillation frequencies near any equilibria if the systems is released from rest with...
A solid wheel with mass M, radius R, and rotational inertia MR2/2, rolls without sliding on...
A solid wheel with mass M, radius R, and rotational inertia MR2/2, rolls without sliding on a horizontal surface. A horizontal force F is applied to the axle and the center of mass has an acceleration a. The magnitudes of the applied force F and the frictional force f of the surface, respectively, are: F=Ma,f=0 F=Ma,f=Ma/2 F=2Ma,f=Ma F=2Ma,f=Ma/2 F =3Ma/2, f =Ma/2
Part b. A thin hoop of mass 22 kg and radius 1.5 m rolls down an...
Part b. A thin hoop of mass 22 kg and radius 1.5 m rolls down an incline that is 4 meters tall. What is the velocity of the thin hoop at the bottom of the incline? m/s Part c. A solid disk of mass 22 kg and radius 1.5 m rolls down an incline that is 4 meters tall. What is the velocity of the solid disk at the bottom of the incline? m/s 5. [–/1 Points]DETAILSMY NOTES A 10.3...
A solid 0.5350-kg ball rolls without slipping down a track toward a loop-the-loop of radius R...
A solid 0.5350-kg ball rolls without slipping down a track toward a loop-the-loop of radius R = 0.8150 m. What minimum translational speed vmin must the ball have when it is a height H = 1.276 m above the bottom of the loop, in order to complete the loop without falling off the track?
A wheel of radius r rolls to the right without slipping on a horizontal road. Its axle moves at a constant speed vaxle.
A wheel of radius r rolls to the right without slipping on a horizontal road. Its axle moves at a constant speed vaxle. (a) Find the velocities of points A, B, and C with respect to the axle. Express your answers in terms of vaxle and r, as needed. (b) Find the velocities of points A, B, and C with respect to the road. (c) Comment on the velocity of point C with respect to the road.
a spherical shell of mass 2.0 kg rolls without slipping down a 38 degree slope A)...
a spherical shell of mass 2.0 kg rolls without slipping down a 38 degree slope A) Find the acceleration, the friction force, and the minimum coefficient of friction needed to prevent slipping. B) if the spherical starts from rest at the top how fast is the center of mass moving at the bottom of the slope if the slope is 1.50 m high? PLEASE INCLUDE DIAGRAM
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT