Question

In: Statistics and Probability

Consider a random sample of n = 10 observations that yield a mean of 64.46. Assume...

Consider a random sample of n = 10 observations that
yield a mean of 64.46. Assume that the population is normal with standard
deviation = 4:5.
(a) Construct a 95% C.I. for .
(b) Construct a 98% C.I. for .
(c) Compare the precision of the two intervals.

Solutions

Expert Solution

Solution :

Given that,

a ) = 64.46

= 4.5

n = 10

At 95% confidence level the z is ,

  = 1 - 95% = 1 - 0.95 = 0.05

/ 2 = 0.05 / 2 = 0.025

Z/2 = Z0.025 = 1.960

Margin of error = E = Z/2* (/n)

= 1.960 * (4.5 / 10 ) = 2.79

At 95% confidence interval estimate of the population mean is,

- E < < + E

64.46 - 2.79 < < 64.46 + 2.79

61.67 < < 67.25

(61.67 , 67.25)

b ) = 64.46

= 4.5

n = 10

At 98% confidence level the z is ,

  = 1 - 98% = 1 - 0.98 = 0.02

/ 2 = 0.02 / 2 = 0.01

Z/2 = Z0.01 = 2.326

Margin of error = E = Z/2* (/n)

= 2.326 * (4.5 / 10 ) = 3.31

At 98% confidence interval estimate of the population mean is,

- E < < + E

64.46 - 3.31 < < 64.46 + 3.31

61.15 < < 67.77 )

(61.15 , 67.77 )

c ) The 98% confidence inerval wider than 95 % confidence inerval.


Related Solutions

A random sample of n = 100 observations is drawn from a population with mean 10...
A random sample of n = 100 observations is drawn from a population with mean 10 and variance 400. (a) Describe the shape of the sampling distribution of ¯x. Does your answer depend on the sample size? ( b) Give the mean and standard deviation of the sampling distribution of ¯x. (c) Find the probability that ¯x is less than 8. (d) Find the probability that ¯x is greater than 9.5. (e) Find the probability that ¯x is between 8...
A random sample of n=64 observations is drawn from a population with a mean equal to...
A random sample of n=64 observations is drawn from a population with a mean equal to 51 and a standard deviation equal to 32. a. Find the probability that overbar x is less than 43. b. Find the probability that overbar x is greater than 57. c. Find the probability that x over bar x falls between 43 and 59. ​(Round to three decimal places as​ needed.)
A random sample of n = 50 observations from a quantitative population produced a mean x...
A random sample of n = 50 observations from a quantitative population produced a mean x = 2.3 and a standard deviation s = 0.34. Your research objective is to show that the population mean μ exceeds 2.2. Calculate the p-value for the test statistic z = 2.08. (Round your answer to four decimal places.) p-value =
A random sample of 20 observations is used to estimate the population mean. The sample mean...
A random sample of 20 observations is used to estimate the population mean. The sample mean and the sample standard deviation are calculated as 162.5 and 22.60, respectively. Assume that the population is normally distributed. a. Construct the 99% confidence interval for the population mean. (Round intermediate calculations to at least 4 decimal places. Round "t" value to 3 decimal places and final answers to 2 decimal places.) b. Construct the 95% confidence interval for the population mean. (Round intermediate...
A random sample of 29 observations is used to estimate the population mean. The sample mean...
A random sample of 29 observations is used to estimate the population mean. The sample mean and the sample standard deviation are calculated as 130.2 and 29.60, respectively. Assume that the population is normally distributed Construct the 95% confidence interval for the population mean. Construct the 99% confidence interval for the population mean Use your answers to discuss the impact of the confidence level on the width of the interval. As the confidence level increases, the interval becomes wider. As...
A random sample of 27 observations is used to estimate the population mean. The sample mean...
A random sample of 27 observations is used to estimate the population mean. The sample mean and the sample standard deviation are calculated as 113.9 and 20.40, respectively. Assume that the population is normally distributed. [You may find it useful to reference the t table.] a. Construct the 90% confidence interval for the population mean. (Round intermediate calculations to at least 4 decimal places. Round "t" value to 3 decimal places and final answers to 2 decimal places.) b. Construct...
Q. A random sample of n = 10 had a mean of 1283 and a standard...
Q. A random sample of n = 10 had a mean of 1283 and a standard deviation of 18.31. Find a 95% confidence interval for the population standard deviation. Critical values for the confidence interval : Lower limit (provide 2 decimals) : Upper limit (provide 2 decimals) :
A random sample of n=100 observations produced a mean of x̅=33 with a standard deviation of s=5.
A random sample of n=100 observations produced a mean of x̅=33 with a standard deviation of s=5. (a) Find a 95% confidence interval for μ Lower-bound: Upper-bound: (b) Find a 99% confidence interval for μ Lower-bound: Upper-bound:
A random sample of n=100 observations produced a mean of x̅=28 with a standard deviation of s=6.
Note: Each bound should be rounded to three decimal places. A random sample of n=100 observations produced a mean of x̅=28 with a standard deviation of s=6. (a) Find a 90% confidence interval for ?Lower-bound:  Upper-bound: (b) Find a 99% confidence interval for ?Lower-bound:  Upper-bound: (c) Find a 95% confidence interval for ?Lower-bound:  Upper-bound:
A random sample of n=100 observations produced a mean of x̅=25 with a standard deviation of s=4.
A random sample of n=100 observations produced a mean of x̅=25 with a standard deviation of s=4. (a) Find a 90% confidence interval for μ, z for 90 percentile : 1.28 (b) Find a 95% confidence interval for μ, z for 95 percentile : 1.75 (c) Find a 99% confidence interval for μ, z for 99 percentile : 2.33
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT